diplomsko delo
Abstract
V diplomskem delu je predstavljen Jordan-Hölderjev izrek na strukturi modulov. Na začetku so na kratko predstavljeni osnovni pojmi kolobarjev, idealov in modulov. Nato se seznanimo tudi z verižnimi pogoji, eksaktnimi zaporedji in kompozicijskimi vrstami, ki so potrebne za razumevanje celotnega diplomskega dela. Na koncu je predstavljen Jordan-Hölderjev izrek, ki ga dokažemo na dva različna načina. Pri prvem načinu si pomagamo s pomočjo pojma dolžina modula, medtem ko se pri drugem načinu dokazovanja opremo na Schreierjev izrek.
Keywords
diplomska dela;matematika;kolobar;modul;verižni pogoj;kompozicijska vrsta;
Data
Language: |
Slovenian |
Year of publishing: |
2012 |
Source: |
Maribor |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
Publisher: |
[A. Skok] |
UDC: |
51(043.2) |
COBISS: |
19321864
|
Views: |
1331 |
Downloads: |
108 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
JORDAN-HÖLDER THEOREM |
Secondary abstract: |
In graduation thesis the Jordan-Hölders theorem on modules is presented. At the begining we introduce the basics of rings, modules and ideals. Next we consider the chain conditions, exact sequence and composition series, which are nessesery to understand the hole thesis. In the end part of the thesis we present the Jordan-Hölders theorem, which we can prove on two different ways. In the first way we help ourselves with the definition of length, and in the second way we depend on Schreiers theorem. |
Secondary keywords: |
ring;module;chain condition;exact sequence;composition series;the Jordan - Hölder theorem; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Undergraduate thesis |
Thesis comment: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Pages: |
40 f. |
Keywords (UDC): |
mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika; |
ID: |
1025965 |