Abstract
Recently Nikolić, Trinajstič and Randić put forward a novel modification ▫$^mW(G)$▫ of the Wiener index ▫$W(G)$▫, defined as ▫$^mW(G) = \sum_{u,v \in E(G)} n_G(u,v)^{-1} n_G(v,u)^{-1}$▫. This definition was generalized to $^mW(G) = \sum_{u,v \in E(G)} n_G(u,v)^{\lambda} n_G(v,u)^{\lamba}$ by Gutman and the present authors. Another class of modified indices ▫$_{\lambda$}W(G) = \frac{1}{2} \sum_{uv \in E(G)} (v(G)^\lammda - n_G(u,v)^\lambda - n_G(v,u)^\lambda)$▫ is studied here. It is shown that some of main properties of ▫$W(G)$▫, $^mW(G)$ and $^{\lambda}W(G)$ are also properties of $_{\lambda}W(G)$, valid for all values of the parameter ▫$\lambda \ne 0$▫. In particular, if ▫$T_n$▫ is any ▫$n$▫-vertex tree, different from the ▫$n$▫-vertex path ▫$P_n$▫ and the ▫$n$▫-vertex star ▫$S_n$▫, then for any ▫$\lambda > 1$▫, ▫$_\lambda W(P_n) > _\lambda W(T_n) > \lambda W(S_n)$▫, vhereas for any ▫$\lambda <1$▫, $_\lambda W(P_n) < _\lambda W(T_n) < \lambda W(S_n)$. Thus ▫$_\lambda W(G)$▫ provides a novel class of structure-descriptors, suitable for modeling branching-dependent properties of organic compounds, applicable in QSPR and QSAR studies. We also demonstrate that if trees are ordered with regard to ▫$_\lambda W(G)$▫ then, in the general case, this ordering is different for different ▫$\lambda$▫.
Keywords
matematika;kemijska teorija grafov;Wienerjev indeks;modificiran Wienerjev indeks;mathematics;chemical graph theory;Wiener index;modified Wiener index;
Data
Language: |
English |
Year of publishing: |
2005 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UM FS - Faculty of Mechanical Engineering |
Publisher: |
Slovensko kemijsko društvo |
UDC: |
519.17:54 |
COBISS: |
9929238
|
ISSN: |
1318-0207 |
Views: |
676 |
Downloads: |
95 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary abstract: |
Nedavno so Nikolić, Trinajstić in Randić predlagali modifikacijo Wienerjevega števila ▫$W(G)$▫, definirano z ▫$^mW(G) = \sum_{uν∈E(G)} n_G(u,ν)^{-1} n_G(u,ν)^{-1}$▫. Invarianto so Gutman in avtorja posplošili na ▫$^λW(G) = \sum_{uν∈E(G)} n_G(u,ν)^λ n_G(u,ν)^λ$▫. Tu obravnavamo posplošitev podobnega tipa, ▫$W_{min,λ}(G) = \sum_{uν∈E(G)}V(G)^λm_G(u,ν)^λ−m_G(u,ν)^{2λ}$▫) in pokažemo, da nekatere pomembne lastnosti ▫$W(G) $▫, ▫$m^W(G)$▫ in ▫$^λW(G)$▫, veljajo tudi za ▫$W_{min,λ}(G)$▫, za večino vrednosti parametra λ. Dokažemo, da za poljubno drevo (povezan acikličen graf) z n točkami ▫$T_n$▫, ki ni pot ▫$P_n$▫ ali zvezda ▫$S_n$▫, velja ▫$W_{min,λ}(Pn) > W_{min,λ}(T_n) > W_{min,λ}(S_n)$▫, za vse λ ≥ 1 in λ < 0. Za te vrednosti parametra je torej ▫$W_{min,λ}(G)$▫ razred topoloških indeksov, ki so lahko uporabni pri obravnavi od razvejanosti odvisnih lastnosti v QSPR in QSAR. Dokažemo tudi, da so vsi novi indeksi različni v naslednjem smislu: če uredimo vsa drevesa glede na ▫$W_{min,λ}(G)$▫ potem za različne vrednosti parametra λ dobimo različne urejenosti. |
Secondary keywords: |
matematika;kemijska teorija grafov;Wienerjev indeks;modificiran Wienerjev indeks; |
URN: |
URN:NBN:SI |
Type (COBISS): |
Scientific work |
Pages: |
str. 272-281 |
Volume: |
ǂVol. ǂ52 |
Issue: |
ǂno. ǂ3 |
Chronology: |
2005 |
ID: |
10859165 |