doctoral thesis
Sara Kališnik Verovšek (Author), Jaka Smrekar (Mentor), Dušan Repovš (Co-mentor)

Abstract

Eden izmed večjih problemov pri preučevanju senzorskih omrežij je, da nudijo le informacijo o področju, ki ga senzorji pokrivajo. V statičnih senzorskih omrežjih klasična Aleksandrova dualnost zadošča kot kriterij za pokritost, ampak v mnogo omrežjih se položaj senzorjev spreminja s časom in ta izrek ni dovolj. V primeru dinamičnih senzorskih omrežij sta območji pokritosti in nepokritosti parametrizirana prostora glede na čas. Parametrizirana homologijaje različica cikcak vztrajne homologije, ki meri, kako se homologijanivojnic prostora spreminja, če spreminjamo parameter. V disertaciji predstavimo parametrizirane ekvivalente nekaj različic klasične Aleksandrove dualnosti. Parametrizirana Aleksandrova dualnost nam tudi pomaga pri razumevanju 'problema vsiljivca'.

Keywords

Alexander duality;persistent homology;zigzag persistence;levelset zigzag persistence;parametrized homology;

Data

Language: English
Year of publishing:
Typology: 2.08 - Doctoral Dissertation
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [S. Kališnik]
UDC: 515.14(043.3)
COBISS: 16756057 Link will open in a new window
Views: 746
Downloads: 562
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Vztrajna homologija in dualnost
Secondary abstract: An important problem with sensor networks is that they do not provide information about the regions that are not covered by their sensors. If the sensors in a network are static, then the Alexander Duality Theorem from classic algebraic topology is sufficient to determine the coverage of a network. However, in many networks the nodes change position with time. In the case of dynamic sensor networks, we consider the covered and uncovered regions as parametrized spaces with respect to time. Parametrized homology is a variant of zigzag persistent homology that measures how the homology of the levelsets of the space changes as we vary the parameter. We present a few theorems that extend different versions of classical Alexander Duality theorem to the setting of parametrized homology theories. This approach sheds light on the practical problem of 'wandering' loss of coverage within dynamic sensor networks.
Secondary keywords: Aleksandrova dualnost;vztrajna homologija;cikcak vztrajnost;cikcak vztrajnost za nivojnice;parametrizirana homologija;
Type (COBISS): Doctoral dissertation
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 3. stopnja
Pages: 90 str.
ID: 10865387
Recommended works:
, doctoral thesis
, no subtitle data available
, no subtitle data available