doktorska disertacija
Abstract
Naj bo ▫$\pi \colon Z \to X$▫ holomorfna submerzija iz kompleksne mnogoterosti ▫$Z$▫ na kompleksno mnogoterost ▫$X$▫ in ▫$D \Subset X$▫ 1-konveksna domena s strogo psevdokonveksnim robom. V disertaciji dokažemo, da pod določenimi predpostavkami vedno obstaja sprej ▫$\pi$▫-prerezov nad ▫$\bar{D}$▫, ki ima predpisano jedro, fiksira izjemno množico ▫$E$▫ domene ▫$D$▫ in je dominanten na ▫$\bar{D} \setminus E$▫. Vsak prerez v tem spreju je razreda ▫${\mathcal C}^k(\bar{D})$▫ in holomorfen na ▫$D$▫. Kot posledico dobimo več aproksimacijskih rezultatov za ▫$\pi$▫-prereze. Med drugim dokažemo, da lahko ▫$\pi$▫-prereze, ki so razreda ▫${\mathcal C}^k(\bar{D})$▫ in holomorfni na ▫$D$▫ aproksimiramo v ▫${\mathcal C}^k(\bar{D})$▫ topologiji s ▫$\pi$▫-prerezi, ki so holomorfni v odprtih okolicah množice ▫$\bar{D}$▫. Pod dodatnimi predpostavkami na submerzijo dobimo tudi aproksimacijo z globalnimi holomorfnimi ▫$\pi$▫-prerezi in princip Oka nad 1-konveksnimi mnogoterostmi. Vključimo tudi rezultat o obstoju pravih holomorfnih preslikav iz 1-konveksnih domen v ▫$q$▫-konveksne mnogoterosti.
Keywords
1-konveksna domena;1-konveksen Cartanov par;Cartanova lema;sprej;sprej prerezov;aproksimacija;princip Oka;prava holomorfna preslikava;
Data
Language: |
Slovenian |
Year of publishing: |
2013 |
Typology: |
2.08 - Doctoral Dissertation |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[K. Stopar] |
UDC: |
517.55(043.3) |
COBISS: |
16765529
|
Views: |
654 |
Downloads: |
187 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary abstract: |
Let ▫$\pi \colon Z \to X$▫ be a holomorphic submersion of a complex manifold ▫$Z$▫ onto a complex manifold ▫$X$▫ and ▫$D \Subset X$▫ a 1-convex domain with strongly pseudoconvex boundary. We prove that under certain conditions there always exists a spray of ▫$\pi$▫-sections over ▫$\bar{D}$▫ which has prescribed core, fixes the exceptional set ▫$E$▫ of ▫$D$▫, and is dominating on ▫$\bar{D} \setminus E$▫. Each section in this spray is of class ▫${\mathcal C}^k(\bar{D})$▫ and holomorphic on ▫$D$▫. As a consequence we obtain several approximation results for ▫$\pi$▫-sections. In particular, we prove that ▫$\pi$▫-sections which are of class ▫${\mathcal C}^k(\bar{D})$▫ and holomorphic on ▫$D$▫ can be approximated in the ▫${\mathcal C}^k(\bar{D})$▫ topology by ▫$\pi$▫-sections that are holomorphic in open neighborhoods of ▫$\bar{D}$▫. Under additional assumptions on the submersion we also get approximation by global holomorphic ▫$\pi$▫-sections and the Oka principle over 1-convex manifolds. We include a result on the existance of proper holomorphic maps from 1-convex domains into ▫$q$▫-convex manifolds. |
Secondary keywords: |
1-convex domain;1-convex Cartan pair;Cartan lemma;spray;spray of sections;approximation;Oka principle;proper holomorphic map; |
Type (COBISS): |
Doctoral dissertation |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 3. stopnja |
Pages: |
72 str. |
ID: |
10865388 |