doktorska disertacija
    	
    Abstract
 
Naj bo ▫$\pi \colon Z \to X$▫ holomorfna submerzija iz kompleksne mnogoterosti ▫$Z$▫ na kompleksno mnogoterost ▫$X$▫ in ▫$D \Subset X$▫ 1-konveksna domena s strogo psevdokonveksnim robom. V disertaciji dokažemo, da pod določenimi predpostavkami vedno obstaja sprej ▫$\pi$▫-prerezov nad ▫$\bar{D}$▫, ki ima predpisano jedro, fiksira izjemno množico ▫$E$▫ domene ▫$D$▫ in je dominanten na ▫$\bar{D} \setminus E$▫. Vsak prerez v tem spreju je razreda ▫${\mathcal C}^k(\bar{D})$▫ in holomorfen na ▫$D$▫. Kot posledico dobimo več aproksimacijskih rezultatov za ▫$\pi$▫-prereze. Med drugim dokažemo, da lahko ▫$\pi$▫-prereze, ki so razreda ▫${\mathcal C}^k(\bar{D})$▫ in holomorfni na ▫$D$▫ aproksimiramo v ▫${\mathcal C}^k(\bar{D})$▫ topologiji s ▫$\pi$▫-prerezi, ki so holomorfni v odprtih okolicah množice ▫$\bar{D}$▫. Pod dodatnimi predpostavkami na submerzijo dobimo tudi aproksimacijo z globalnimi holomorfnimi ▫$\pi$▫-prerezi in princip Oka nad 1-konveksnimi mnogoterostmi. Vključimo tudi rezultat o obstoju pravih holomorfnih preslikav iz 1-konveksnih domen v ▫$q$▫-konveksne mnogoterosti.
    Keywords
 
1-konveksna domena;1-konveksen Cartanov par;Cartanova lema;sprej;sprej prerezov;aproksimacija;princip Oka;prava holomorfna preslikava;
    Data
 
    
        
            | Language: | Slovenian | 
        
        
            | Year of publishing: | 2013 | 
            
        
        
            | Typology: | 2.08 - Doctoral Dissertation | 
            
        
            | Organization: | UL FMF - Faculty of Mathematics and Physics | 
        
            | Publisher: | [K. Stopar] | 
   
        
            | UDC: | 517.55(043.3) | 
   
        
        
            | COBISS: | 16765529   | 
        
        
  
        
            | Views: | 654 | 
        
        
            | Downloads: | 187 | 
        
        
            | Average score: | 0 (0 votes) | 
        
            | Metadata: |                       | 
    
    
    Other data
 
    
        
            | Secondary language: | English | 
        
        
        
        
            | Secondary abstract: | Let ▫$\pi \colon Z \to X$▫ be a holomorphic submersion of a complex manifold ▫$Z$▫ onto a complex manifold ▫$X$▫ and ▫$D \Subset X$▫ a 1-convex domain with strongly pseudoconvex boundary. We prove that under certain conditions there always exists a spray of ▫$\pi$▫-sections over ▫$\bar{D}$▫ which has prescribed core, fixes the exceptional set ▫$E$▫ of ▫$D$▫, and is dominating on ▫$\bar{D} \setminus E$▫. Each section in this spray is of class ▫${\mathcal C}^k(\bar{D})$▫ and holomorphic on ▫$D$▫. As a consequence we obtain several approximation results for ▫$\pi$▫-sections. In particular, we prove that ▫$\pi$▫-sections which are of class ▫${\mathcal C}^k(\bar{D})$▫ and holomorphic on ▫$D$▫ can be approximated in the ▫${\mathcal C}^k(\bar{D})$▫ topology by ▫$\pi$▫-sections that are holomorphic in open neighborhoods of ▫$\bar{D}$▫. Under additional assumptions on the submersion we also get approximation by global holomorphic ▫$\pi$▫-sections and the Oka principle over 1-convex manifolds. We include a result on the existance of proper holomorphic maps from 1-convex domains into ▫$q$▫-convex manifolds. | 
        
        
            | Secondary keywords: | 1-convex domain;1-convex Cartan pair;Cartan lemma;spray;spray of sections;approximation;Oka principle;proper holomorphic map; | 
        
            
        
            | Type (COBISS): | Doctoral dissertation | 
        
        
           
        
           
        
           
        
           
        
            | Thesis comment: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 3. stopnja | 
        
           
        
           
        
           
        
            | Pages: | 72 str. | 
        
           
        
           
        
           
        
           
        
           
        
           
        
           
        
           
        
          
        
          
        
          
        
         
        
         
        
        
            | ID: | 10865388 |