doktorska disertacija
Abstract
V doktorski disertaciji je izpeljanih nekaj novih metod za aproksimacijo krožnega loka. Prvi del predstavlja asimptotično najboljša enostranska geometrijska aproksimacija reda ena (▫$G^1$▫) glede na radialno napako. Metoda predstavlja aproksimacijo z Bézierjevimi krivuljami stopnje štiri, pri kateri kontrolne točke določimo tako, da se poleg robnih točk, aproksimacijska krivulja dotika krožnega loka z redom ena še v dveh notranjih točkah. Dokaz obstoja rešitve je zaradi kompleksnosti sistema enačb narejen s pomočjo homotopije. V nadaljevanju je izpeljana metoda uporabljena za aproksimacijo stožnic. Aproksimacijo izvedemo tako, da do izpolnitve dodatnih pogojev metodo uporabimo v subdivizijskem postopku za določitev novih delilnih točk, nato z isto metodo aproksimiramo vsak posamezen del. V drugem delu disertacije za mero napake namesto radialne napake vzamemo napako ukrivljenosti. Predstavljenih je nekaj preprostih metod s polinomi nizkih stopenj in nekaj metod, kjer za aproksimacijo uporabimo dvoloke. Ugotovili smo, da imajo izpeljane metode še vedno optimalni red aproksimacije glede na radialno napako in za dva reda nižji aproksimacijski red glede na napako ukrivljenosti, ki je posledica odvodov drugega reda v formuli za ukrivljenost. Izkazalo se je, da je optimalna aproksimacija krožnega loka vedno dosežena tedaj, ko napaka enakomerno oscilira, zato smo zadnji del disertacije posvetili izpeljavi metod takšne oblike. Gre za aproksimacije s polinomi nizkih stopenj, ki imajo v robnih točkah s krožnim lokom geometrijski kontakt določenega reda, ali pa samo aproksimirajo podan krožni lok. V slednjem primeru dobimo za rešitev skaliran polinom Čebiševa. Podobno kot v prvem delu disertacije, se tudi tu v primeru kompleksnejših sistemov enačb poslužimo dokaza obstoja rešitve s pomočjo homotopije.
Keywords
matematika;krožni lok;Bézierjeva krivulja;radialna napaka;napaka ukrivljenosti;homotopija;stožnice;asimptotična analiza;najboljša enakomerna aproksimacija;
Data
Language: |
Slovenian |
Year of publishing: |
2018 |
Typology: |
2.08 - Doctoral Dissertation |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[B. Kovač] |
UDC: |
519.6(043.3) |
COBISS: |
18316889
|
Views: |
917 |
Downloads: |
587 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Geometric approximation of circular arcs |
Secondary abstract: |
In this PhD thesis several new methods for an approximation of the circular arc are presented. The first part represents asymptotically the best single-sided geometric approximation of order one (▫$G^1$▫) according to the radial error. It is an approximation with the quartic Bézier curve. The control points are set so that in addition to the boundary points the approximative curve touches the circular arc with order one at two inner points. Due to the complexity of the system of equations, the proof of the existence of a solution is made using the homotopy. The generalization of the derived method is then used for the approximation of conic sections. The method is used in a subdivision process to determine new vertices until some additional conditions are met. Each individual part is then approximated using the derived method. In the second part of the thesis curvature error is used instead of the radial one. Some simple low-degree polynomial methods and biarc methods are presented. It is confirmed that the derived methods still have the optimal approximation order according to the radial error, while the approximation order according to the curvature error is reduced by two as expected due to the second order derivatives. As it turns out the optimal approximation of the circular arc is always achieved when the error equally oscillates. The last part of the thesis is thus dedicated to the methods of this type. These are low-degree approximations that have a geometric contact of some order with the circular arc at the boundary points, or they only approximate the same angle as the circular arc. In the latter case, we obtain a scaled Chebyshev polynomial. Similarly as in the first part, when a complicated system of equations appears, the proof of the existence of a solution is done using the homotopy. |
Secondary keywords: |
mathematics;circular arc;Bézier curve;radial error function;curvature error function;homotopy;conic sections;asymptotic analysis;best uniform approximation; |
Type (COBISS): |
Doctoral dissertation |
Study programme: |
0 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 3. stopnja |
Pages: |
72 str. |
ID: |
10918125 |