magistrsko delo
Abstract
V magistrskem delu predstavimo Gauss-Wantzelov izrek, ki nam pove, za katera naravna števila $n$ je pravilne $n$-kotnike mogoče konstruirati zgolj z rabo ravnila in šestila. Izrek to lastnost števil najprej analizira na njihovih praštevilskih (oznaka $p$) gradnikih, za katere ugotavlja, da so pravilni $p$-kotniki konstruktibilni natanko tedaj, ko so praštevila $p$ Fermatova (oznaka $p_F$). Pri tem je vsak izmed avtorjev izreka prispeval dokaz ene smeri te ekvivalence: Gauss je najprej našel algoritem, s katerim lahko za poljubno Fermatovo praštevilo $p_F$ naposled vedno skonstruiramo ustrezni $p_F$-kotnik, Wantzel pa je dokazal, da niti teoretično ne bi bilo mogoče skonstruirati drugačnih $p$-kotnikov kot prav tistih, za katere je to storil že Gauss.
Središčne kote med seboj različnih $p_{F_i}$-kotnikov lahko z ustreznimi celoštevilskimi kombinacijami seštejemo v središčni kot $\prod_i p_{F_i}$-kotnika, ob tem pa ga lahko z zaporednimi bisekcijami še poljubnokrat razpolovimo, v čemer imamo tako tudi algoritem, kako konstruirati pravilne večkotnike za sestavljena števila $s$ v obliki $s=2^kp_{F_1}p_{F_2}\ldots p_{F_t}$. Kot pri konstruiranju posameznih $p$-kotnikov se tudi pri njihovem sestavljanju v $s$-kotnike izkaže, da se zadostni pogoj za uporabo tega algoritma samega že pokriva s potrebnim, zato so le-ti konstruktibilni za natanko opisane oblike števil $s$.
Keywords
konstrukcije z ravnilom in šestilom;pravilni večkotniki;koreni enote;ciklotomični polinomi;Gaussove periode;Wantzelov sistem;Fermatova praštevila;
Data
Language: |
Slovenian |
Year of publishing: |
2018 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[L. Grahelj] |
UDC: |
512.62 |
COBISS: |
18365017
|
Views: |
1061 |
Downloads: |
431 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
The Gauss-Wantzel Theorem |
Secondary abstract: |
The subject of this paper is the Gauss-Wantzel Theorem that states which regular $n$-gons can be constructed using only straightedge and compass. Said property of natural numbers $n$ is first analyzed among their basic building blocks in the form of primes (denoted by $p$), for which the theorem determines that regular $p$-gon is constructible if and only if $p$ is a Fermat prime (denoted by $p_F$). In that regard, each of the authors provided the proof of one of the directions of the proposed equivalence: Gauss first developed an algorithm that allows us to eventually construct a regular $p_F$-gon for any Fermat prime $p_F$, whereas Wantzel proved that no regular $n$-gons others than the ones already suggested by Gauss could ever be constructed.
Using appropriate integer combinations, central angles of different $p_{F_i}$-gons can be added into central angle of a $\prod_i p_{F_i}$-gon, which can further be repeatedly divided into two by consecutive angle bisections. Hence we have an algorithm on how to construct a regular $c$-gon for composite numbers $c$ in the form $c=2^kp_{F_1}p_{F_2}\ldots p_{F_t}$. As with the construction of single $p$-gons, it turns out that the sufficient condition for the application of this particular algorithm for their composition already aligns with the necessary one, therefore making the aforementioned $c$-gons precisely the ones being constructible. |
Secondary keywords: |
compass-and-strightedge constructions;regular polygons;roots of unity;cyclotomic polynomials;Gaussian periods;Wantzel system;Fermat primes; |
Type (COBISS): |
Master's thesis/paper |
Study programme: |
0 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Pedagoška matematika |
Pages: |
X, 55 str. |
ID: |
10933760 |