magistrsko delo
Povzetek
Origami je stara japonska umetnost prepogibanja papirja. Z matematičnega stališča list papirja obravnavamo kot model ravnine in proučujemo lastnosti geometrijskih objektov – točk in daljic, ki s prepogibanjem nastanejo. V magistrskem delu bomo raziskovali geometrijo origamija. V prvem delu se bomo posvetili vprašanju, kaj vse lahko konstruiramo s prepogibanjem papirja. Predstavili bomo Huzita-Hatori aksiome, ki predstavljajo temeljne postopke prepogibanja papirja. Predstavili bomo konstrukcije s šestilom in neoznačenim ravnilom, katerih temelj predstavlja pet Evklidovih postulatov, jih primerjali z aksiomi origamija in nato dokazali, da lahko s prepogibanjem papirja naredimo vse evklidske konstrukcije. V drugem delu magistrskega dela se bomo posvetili temeljnemu razlogu, zakaj je matematični origami močnejše orodje od neoznačenega ravnila in šestila. Dokazali bomo, da nam aksiomi origamija omogočajo konstruiranje rešitev kubičnih enačb. Predstavili bomo delo Margharite P. Beloch in njene origami konstrukcije dolžine ∛2 ter z iskanjem ničel rešili nekaj kubičnih enačb s pomočjo grafične Lillove metode. S prepogibanjem papirja so tako rešljivi tudi nekateri starogrški problemi. Predstavili bomo Abejevo in Justinovo trisekcijo – dva različna postopka tretjinjenja kota ter postopek podvojitve prostornine kocke s pomočjo Messerjeve konstrukcije števila ∛2.
Ključne besede
origami geometrija;prepogibanje papirja;origami konstrukcije;aksiomi Huzita-Hatori;kubične enačbe;Belochin kvadrat;Lillova metoda;konstrukcije z ravnilom in šestilom;tretjinjenje kota;Abejeva trisekcija;Justinova trisekcija;Meserjeva konstrukcija;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2022 |
Tipologija: |
2.09 - Magistrsko delo |
Organizacija: |
UL PEF - Pedagoška fakulteta |
Založnik: |
[T. Zore] |
UDK: |
514(043.2) |
COBISS: |
109971715
|
Št. ogledov: |
0 |
Št. prenosov: |
0 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Origami geometry |
Sekundarni povzetek: |
Origami is an old Japanese art of paper folding. From a mathematical point of view, we consider a sheet of paper as a model of a plane and study the properties of geometric objects - points and line segments, which are formed by folding. In the master's thesis we will explore the geometry of origami. In the first part, we will focus on the question of what we can construct by folding paper. We will present the Huzita-Hatori axioms, which represent the basic procedures of paper folding. We will present constructions with a compass and an unmarked ruler based on five Euclidean postulates, compare them with the axioms of origami, and then prove that we can make all Euclidean constructions by folding paper. In the second part of the master's thesis, we will focus on the fundamental reason why mathematical origami is a more powerful tool than the unmarked ruler and compass. We will prove that the axioms of origami allow us to construct solutions of cubic equations. We will present the work of Margharita P. Beloch and her origami constructions of length ∛2 and solve some cubic equations by finding real roots using the graphical Lill’s method. By folding the paper also some ancient Greek problems can be solved in this way. We will present Abe's and Justin's trisection - two different procedures of forming a tertiary angle and the process of doubling the volume of a cube using Messer's construction of the number ∛2. |
Sekundarne ključne besede: |
Matematika;Geometrija;Origami;Aksiomi;Univerzitetna in visokošolska dela; |
Vrsta datoteke: |
application/pdf |
Vrsta dela (COBISS): |
Magistrsko delo/naloga |
Komentar na gradivo: |
Univ. v Ljubljani, Pedagoška fak, Poučevanje, Predmetno poučevanje |
Strani: |
57 str. |
ID: |
15502803 |