magistrsko delo magistrskega študijskega programa II. stopnje Strojništvo
Miha Pogačar (Author), Gregor Čepon (Mentor), Miha Boltežar (Co-mentor)

Abstract

Dinamska analiza kompleksnih struktur je računsko zahtevna, zato se poslužujemo delitve strukture na več podstruktur. Vsako izmed podstruktur analiziramo ločeno in z metodami redukcije zmanjšamo število njenih prostostnih stopenj, nato pa podstrukture sklopimo v celoto, kar omogoča hitrejšo analizo. V prvem delu magistrske naloge je predstavljena geometrijsko linearna formulacija končnega elementa ter Craig-Bamptonova in Rubinova metoda redukcije modelov. V drugem delu magistrske naloge je formulacija končnega elementa razširjena z nelinearno zvezo med pomiki in deformacijami, kar predstavlja geometrijsko nelinearnost. Zaradi nelinearnosti sistema je potrebna tudi nadgradnja redukcijske metode. Dinamski odziv smo izračunali z uporabo analitičnih enačb, analizo celotne strukture z metodo končnih elementov in uporabo redukcijskih metod. V izbranem frekvenčnem območju smo pokazali dobro ujemanje.

Keywords

magistrske naloge;dinamika;geometrijska nelinearnost;metoda končnih elementov;podstrukturiranje;redukcija modelov;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FS - Faculty of Mechanical Engineering
Publisher: [M. Pogačar]
UDC: 519.6:531/533(043.2)
COBISS: 16391451 Link will open in a new window
Views: 1376
Downloads: 362
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Nonlinear Model Reduction in Dynamic Substructuring
Secondary abstract: Dynamic analysis of complex structures can be very demanding, therefore such structures are being divided into several substructures. Each of the substructures is analysed separately and the number of degrees of freedom is reduced using model order reduction methods. Then the initial structure is obtained by assembly of the reduced substructures, providing faster analysis. In the first part of the dissertation geometrically linear formulation of the finite element and Craig-Bampton model reduction method is presented. In the second part of the dissertation the finite element formulation is upgraded using nonlinear displacement - deformation relations. Due to the geometrical nonlinearity of the system also reduction methods have to be upgraded. The comparison of the beam dynamic responses, obtained by analytical equations, finite element analysis of the complete structure and use of model reduction method indicates good correspondence within the selected frequency interval.
Secondary keywords: dynamics;geometrical nonlinearity;finite element methods;substructuring;model reduction;
Type (COBISS): Master's thesis/paper
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. Ljubljana, Fak. za strojništvo
Pages: XXIV, 56 str.
ID: 10957165
Recommended works:
, magistrsko delo magistrskega študijskega programa II. stopnje Strojništvo
, no subtitle data available
, no subtitle data available
, no subtitle data available