delo diplomskega seminarja
Jure Markun (Author), Anita Buckley (Mentor)

Abstract

Namen tega diplomskega seminarja je obravnava algebraičnih krivulj tretje stopnje in njihovih prevojnih točk. Opisane so lastnosti kubičnih krivulj ter struktura Abelove grupe na točkah gladke kubike ter v posebnem primeru na prevojnih točkah. Predstavljen je problem eksplicitnega izračuna prevojev iz koeficientov krivulje. Rešljivost tega problema je ekvivalentna rešljivosti Galoisove grupe, prirejene krivulji. Podan je tudi postopek za ekspliciten izračun prevojev. Z izračunanim prevojem lahko kubično krivuljo s projektivnimi transformacijami preoblikujemo v Weierstrassovo obliko.

Keywords

matematika;kubične krivulje;prevoji kubičnih krivulj;Galoisove grupe;Abelova grupa na kubični krivulji;Hessejeva konfiguracija;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [J. Markun]
UDC: 514.7
COBISS: 18423385 Link will open in a new window
Views: 669
Downloads: 239
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Flexes of cubic curves
Secondary abstract: The topic of this seminar are algebraic curves of degree three - cubic curves and their flexes. We study properties of curves and introduce Abelian group structure on the points of a nonsingular cubic and also on the flexes. We explain how to calculate the 9 flexes explicitely from the coefficients of a curve. To show that the calculation is always possible, we prove the solvability of the Galois group of flexes. Given a flex on a cubic curve, it is possible to put the curve into Weierstrass form using projective transformations.
Secondary keywords: mathematics;cubic curves;flexes of cubic curves;Galois groups;abelian group on cubic curve;Hesse configuration;
Type (COBISS): Final seminar paper
Study programme: 0
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Pages: 47 str.
ID: 10958072
Recommended works:
, delo diplomskega seminarja
, delo diplomskega seminarja
, delo diplomskega seminarja