magistrsko delo
Žiga Leber (Author), Damjan Strnad (Mentor), Štefan Kohek (Co-mentor)

Abstract

V magistrskem delu preučujemo izgubno stiskanje slik z uporabo variacijskega avtokodirnika. Implementirali smo njegovo povratno različico, imenovano konvolucijski DRAW, ki v vlogi kodirnika in dekodirnika uporablja nevronsko mrežo LSTM. Za implementacijo smo uporabili jezik Python in knjižnico PyTorch. Delovanje algoritma smo testirali na podatkovni zbirki CIFAR-10 ter rezultate primerjali z metodo JPEG. Ugotovili smo, da so rezultati primerljivi v smislu kakovosti rekonstrukcije.

Keywords

stiskanje slik;nevronske mreže;variacijski avtokodirniki;konvolucijski DRAW;magistrske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UM FERI - Faculty of Electrical Engineering and Computer Science
Publisher: Ž. Leber
UDC: 004.627:004.932(043.2)
COBISS: 21878294 Link will open in a new window
Views: 645
Downloads: 121
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Lossy image compression using variational autoencoder
Secondary abstract: In this thesis we study lossy image compression using variational autoencoder. We implemented its recurrent variant called convolutional DRAW, which uses a LSTM neural network in the role of the encoder and the decoder. The implementation was done in Python using the PyTorch library. The performance was tested the CIFAR-10 dataset and the results compared to the JPEG compression method. We determined that the results are comparable in reconstruction quality.
Secondary keywords: image compression;neural netwoks;variational autoencoder;convolutional DRAW;
URN: URN:SI:UM:
Type (COBISS): Master's thesis/paper
Thesis comment: Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije
Pages: XIII, 40 str.
ID: 10958139