delo diplomskega seminarja
Abstract
The thesis presents some classical results concerning the Utility Theory. We present the requirements that a preorder must satisfy in order to be representable with a utility function while also exploring weaker conditions such as in the case of quasi-preorders. We establish the existence of a utility function, and explore the requirements for its upper semi-continuity in the form of the Rader theorem. Further using the Uryshon-Nachbin approach we present the proofs for both the classical Debreu theorem and the Eilenberg theorem, guaranteeing us the existence of a continuous utility on second countable topological spaces and connected separable topological spaces, respectively.
Keywords
mathematics;utility function;continuity;Nachbin-Uryshon approach;Debreu separability;
Data
Language: |
English |
Year of publishing: |
2018 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[J. Tominc] |
UDC: |
519.8 |
COBISS: |
18479449
|
Views: |
616 |
Downloads: |
235 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Funkcija koristnosti in preference: nekaj rezultatov |
Secondary abstract: |
Delo diplomskega seminarja predstavi nekaj klasičnih rezultatov teorije koristnosti začenši z zahtevami za obstoj funkcije koristnost za totalne binarne relacije. Dodatno predstavimo šibkejše zahteve, ki zadostujejo za obstoj funkcije koristnosti za binarne relacije, ki niso tranzitivne. Nadaljujemo z raziskovanjem zahtev za zveznost funkcije koristnosti na 2-števnem topološkem prostoru v obliki Debreujevega izreka in obstoja zvezne funkcije na povezanem in separabilnem topološkem prostoru, ki je predstavljen z Eilenbergovim izrekom. Izreka dokažemo s pomočjo Nachbinove razširitve Uryshonovega dela. |
Secondary keywords: |
matematika;funkcija koristnosti;Nachbin-Uryshon;zveznost;Debreujeva ločljivost; |
Type (COBISS): |
Final seminar paper |
Study programme: |
0 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja, Program dvojne diplome iz matematike z Univerzo v Trstu |
Pages: |
28 str. |
ID: |
10961999 |