magistrsko delo magistrskega študijskega programa II. stopnje Strojništvo
Aleksij Kraljič (Author), Drago Bračun (Mentor)

Abstract

Elektroencefalografija (EEG) in funkcijska magnetna resonanca (fMR) sta neinvazivni metodi za merjenje možganske aktivnosti. EEG ima v nasprotju s fMR zelo visoko časovno ločljivost (več kHz), medtem ko ima fMR višjo prostorsko ločljivost. Sočasno snemanje EEG in fMR tako omogoča natančnejši vpogled v funkcije možganov. Največja slabost sočasnega snemanja EEG in fMR je močna interakcija med njima, saj se v EEG signalih inducirajo močni artefakti zaradi sprememb magnetnega pretoka. Predstavili smo robusten postopek in algoritme za odstranjevanje tovrstnih artefaktov iz EEG signalov. Z analizo učinkovitosti algoritmov smo dokazali ustrezno odstranitev artefaktov za nadaljnje analize.

Keywords

magistrske naloge;EEG;fMR;nevroznanost;digitalno procesiranje signalov;digitalno filtriranje;splošni linearni model;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FS - Faculty of Mechanical Engineering
Publisher: [A. Kraljič]
UDC: 616.831-073-71(043.2)
COBISS: 16611355 Link will open in a new window
Views: 732
Downloads: 426
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Robust procedure for artifact removal from electroencephalographic (EEG) measurements acquired during simultaneous functional magnetic resonance imaging (fMRI)
Secondary abstract: Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive methods for measuring brain activity. EEG provides a very high temporal resolution, whereas fMRI provides high spatial resolution. A deeper insight into brain functions can be achieved by scanning the brain activity with simultaneous EEG-fMRI. The main downside of simultaneous EEG-fMRI scanning is a high EEG signal contamination caused by electromagnetic induction due to changes in magnetic flux. We presented a robust procedure and algorithms for artifact removal from EEG signal. We analyzed the performance of the procedure and showed a satisfactory artifact reduction for further analyses.
Secondary keywords: neuroscience;digital signal processing;digital filtering;general linear model;
Type (COBISS): Master's thesis/paper
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. Ljubljana, Fak. za strojništvo
Pages: XXV, 76 str.
ID: 11123137
Recommended works:
, ǂan ǂintegrative platform for reproducible neuroimaging analytics