Abstract

We study perturbations of the eigenvalue problem for the negative Laplacian plus an indefinite and unbounded potential and Robin boundary condition. First we consider the case of a sublinear perturbation and then of a superlinear perturbation. For the first case we show that for ▫$\lambda < \widehat{\lambda}_{1}$▫ (▫$\widehat{\lambda}_{1}$▫ being the principal eigenvalue) there is one positive solution which is unique under additional conditions on the perturbation term. For ▫$\lambda \geq \widehat{\lambda}_{1}$▫ there are no positive solutions. In the superlinear case, for ▫$\lambda < \widehat{\lambda}_{1}$▫ we have at least two positive solutions and for ▫$\lambda \geq \widehat{\lambda}_{1}$▫ there are no positive solutions. For both cases we establish the existence of a minimal positive solution ▫$\bar{u}_{\lambda}$▫ and we investigate the properties of the map ▫$\lambda \mapsto \bar{u}_{\lambda}$▫.

Keywords

indefinite and unbounded potential;Robin eigenvalue problem;sublinear perturbation;superlinear perturbation;maximum principle;positive solution;minimal positive solution;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.956
COBISS: 17925721 Link will open in a new window
ISSN: 1078-0947
Views: 456
Downloads: 273
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Pages: str. 2589-2618
Volume: ǂVol. ǂ37
Issue: ǂno. ǂ5
Chronology: 2017
DOI: http://dx.doi.org/10.3934/dcds.2017111
ID: 11221111