Povzetek

We consider perturbations of nonlinear eigenvalue problems driven by a nonhomogeneous differential operator plus an indefinite potential. We consider both sublinear and superlinear perturbations and we determine how the set of positive solutions changes as the real parameter ▫$\lambda$▫ varies. We also show that there exists a minimal positive solution ▫$\overline{u}_\lambda$▫ and determine the monotonicity and continuity properties of the map ▫$\lambda\mapsto\overline{u}_\lambda$▫. Special attention is given to the particular case of the ▫$p$▫-Laplacian.

Ključne besede

nonhomogeneous differential operator;sublinear perturbation;superlinear perturbation;nonlinear regularity;nonlinear maximum principle;comparison principle;minimal positive solution;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 18481753 Povezava se bo odprla v novem oknu
ISSN: 1534-0392
Št. ogledov: 656
Št. prenosov: 336
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Strani: str. 1403-1431
Letnik: ǂVol. ǂ18
Zvezek: ǂno. ǂ3
Čas izdaje: May 2019
DOI: 10.3934/cpaa.2019068
ID: 11191853