Povzetek

We consider a nonlinear Dirichlet problem driven by a nonhomogeneous differential operator plus an indefinite potential. In the reaction we have the competing effects of a singular term and of concave and convex nonlinearities. In this paper the concave term will be parametric. We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the positive parameter ▫$\lambda$▫ varies.

Ključne besede

nonhomogeneous differential operator;indefinite potential;singular term;concave and convex nonlinearities;truncation;comparison principles;nonlinear regularity;nonlinear maximum principle;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956.2
COBISS: 18663001 Povezava se bo odprla v novem oknu
ISSN: 1664-2368
Št. ogledov: 474
Št. prenosov: 219
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Vrsta dela (COBISS): Članek v reviji
Strani: str. 2237-2262
Letnik: ǂVol. ǂ9
Zvezek: ǂiss. ǂ4
Čas izdaje: Dec. 2019
DOI: 10.1007/s13324-019-00333-7
ID: 11779601