Povzetek

We study a parametric Robin problem driven by a nonlinear nonhomogeneous differential operator and with a superlinear Carathéodory reaction term. We prove a bifurcation-type theorem for small values of the parameter. Also, we show that as the parameter ▫$\lambda > 0$▫ approaches zero, we can find positive solutions with arbitrarily big and arbitrarily small Sobolev norm. Finally, we show that for every admissible parameter value, there is a smallest positive solution ▫$u^\ast_\lambda$▫ of the problem, and we investigate the properties of the map ▫$\lambda \mapsto u^\ast_\lambda$▫.

Ključne besede

Robin boundary condition;nonlinear nonhomogeneous differential operator;nonlinear regularity;nonlinear maximum principle;bifurcation-type result;extremal positive solution;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956.2
COBISS: 18103641 Povezava se bo odprla v novem oknu
ISSN: 0933-7741
Št. ogledov: 539
Št. prenosov: 316
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 553-580
Letnik: ǂVol. ǂ30
Zvezek: ǂiss. ǂ3
Čas izdaje: May 2018
DOI: 10.1515/forum-2017-0124
ID: 11207985