Povzetek

We consider a nonlinear Robin problem driven by a nonhomogeneous differential operator, with reaction which exhibits the competition of two Carathéodory terms. One is parametric, ▫$(p-1)$▫-sublinear with a partially concave nonlinearity near zero. The other is ▫$(p-1)$▫-superlinear and has almost critical growth. Exploiting the special geometry of the problem, we prove a bifurcation-type result, describing the changes in the set of positive solutions as the parameter ▫$\lambda > 0$▫ varies.

Ključne besede

competition phenomena;nonlinear regularity;nonlinear maximum principle;strong comparison principle;bifurcation-type result;almost critical growth;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956.2
COBISS: 18727769 Povezava se bo odprla v novem oknu
ISSN: 1050-6926
Št. ogledov: 446
Št. prenosov: 264
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 1774-1803
Letnik: ǂVol. ǂ30
Zvezek: ǂiss. ǂ2
Čas izdaje: Apr. 2020
DOI: 10.1007/s12220-019-00278-0
ID: 11758059