Povzetek

We consider a nonlinear parametric Dirichlet problem driven by the ▫$p$▫-Laplace differential operator and a reaction which has the competing effects of a parametric singular term and of a Carathéodory perturbation which is ▫$p-1$▫-linear near ▫$+\infty$▫. The problem is uniformly nonresonant with respect to the principal eigenvalue of ▫$(-\Delta _p,W^{1,p}_0(\Omega ))$▫. We look for positive solutions and prove a bifurcation-type theorem describing in an exact way the dependence of the set of positive solutions on the parameter ▫$\lambda >0$▫.

Ključne besede

parametric singular term;(p-1)-linear perturbation;uniform nonresonance;nonlinear regularity theory;truncation;strong comparison principle;bifurcation-type theorem;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956.2
COBISS: 18403929 Povezava se bo odprla v novem oknu
ISSN: 1664-3607
Št. ogledov: 584
Št. prenosov: 342
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: art. 1950011 (21 str.)
Letnik: ǂVol. ǂ9
Zvezek: ǂiss. ǂ3
Čas izdaje: Dec. 2019
DOI: 10.1142/S1664360719500115
ID: 11204695