Povzetek

We consider a nonlinear Robin problem driven by the sum of ▫$p$▫-Laplacian and ▫$q$▫-Laplacian (i.e. the ▫$p, q)$▫-equation). In the reaction there are competing effects of a singular term and a parametric perturbation ▫$\lambda f(z,x)$▫, which is Carathéodory and ▫$(p-1)$▫-superlinear at ▫$x \in \mathbb{R}$▫ without satisfying the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques, we prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter ▫$\lambda > 0$▫ varies.

Ključne besede

nonhomogeneous differential operator;nonlinear regularity theory;truncation;strong comparison principle;positive solutions;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 30724867 Povezava se bo odprla v novem oknu
ISSN: 1468-1218
Št. ogledov: 433
Št. prenosov: 291
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: art. 103217 (20 str.)
Zvezek: ǂVol. ǂ58
Čas izdaje: Apr. 2021
DOI: 10.1016/j.nonrwa.2020.103217
ID: 12058563