Povzetek

We consider a nonlinear boundary value problem driven by a nonhomogeneous differential operator. The problem exhibits competing nonlinearities with a superlinear (convex) contribution coming from the reaction term and a sublinear (concave) contribution coming from the parametric boundary (source) term. We show that for all small parameter values ▫$\lambda > 0$▫, the problem has at least five nontrivial smooth solutions, four of constant sign and one nodal. We also produce extremal constant sign solutions and determine their monotonicity and continuity properties as the parameter ▫$\lambda > 0$▫ varies. In the semilinear case we produce a sixth nontrivial solution but without any sign information. Our approach uses variational methods together with truncation and perturbation techniques, and Morse theory.

Ključne besede

nonlinear nonhomogeneous differential operator;nonlinear boundary condition;nonlinear regularity theory;nonlinear maximum principle;critical groups;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956.2
COBISS: 18194265 Povezava se bo odprla v novem oknu
ISSN: 0095-4616
Št. ogledov: 603
Št. prenosov: 347
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 251-298
Letnik: ǂVol. ǂ80
Zvezek: ǂiss. ǂ1
Čas izdaje: Aug. 2019
DOI: 10.1007/s00245-017-9465-6
ID: 11193169