Oleg Gutik (Author), Dušan Repovš (Author)

Abstract

We study the semigroup ▫$\mathscr{I}^{\mathrm{cf}}_\lambda$▫ of injective partial cofinite selfmaps of an infinite cardinal ▫$\lambda$▫. We show that ▫$\mathscr{I}^{\mathrm{cf}}_\lambda$▫ is a bisimple inverse semigroup and each chain of idempotents in ▫$\mathscr{I}^{\mathrm{cf}}_\lambda$▫ is contained in a bicyclic subsemigroup of ▫$\mathscr{I}^{\mathrm{cf}}_\lambda$▫, we describe the Green relations on ▫$\mathscr{I}^{\mathrm{cf}}_\lambda$▫ and we prove that every non-trivial congruence on ▫$\mathscr{I}^{\mathrm{cf}}_\lambda$▫ is a group congruence. Also, we describe the structure of the quotient semigroup ▫$\mathscr{I}^{\mathrm{cf}}_\lambda/\sigma$▫, where ▫$\sigma$▫ is the least group congruence on ▫$\mathscr{I}^{\mathrm{cf}}_\lambda$▫.

Keywords

teorija grup;polgrupe;kongruenca;simetrične grupe;poldirektni produkt;mathematics;bicyclic semigroup;semigroup of bijective partial transformations;congruence;symmetric group;group congruence;semidirect product;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 512.536
COBISS: 17538393 Link will open in a new window
ISSN: 0139-9918
Views: 485
Downloads: 339
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary keywords: teorija grup;polgrupe;kongruenca;simetrične grupe;poldirektni produkt;
Type (COBISS): Article
Pages: str. 981-992
Volume: ǂVol. ǂ65
Issue: ǂno. ǂ5
Chronology: 2015
DOI: http://dx.doi.org/10.1515/ms-2015-0067
ID: 11233709
Recommended works:
, no subtitle data available
, delo diplomskega seminarja