magistrsko delo
Povzetek
Poldirektni produkt grup je posplošitev direktnega produkta, ki omogoča konstrukcije precej večjega nabora grup, kot pa jih lahko iz standardnih družin grup konstruiramo z direktnim produktom.
Magistrsko delo je naravno nadaljevanje avtoričinega diplomskega dela Poldirektni produkt grup. V njem smo vpeljali pojem poldirektnega produkta in ga predstavili na konkretnih primerih, predvsem poldirektnih produktov cikličnih grup. Dokazali smo nekaj zanimivih rezultatov, ki pa so obenem odprli tudi vrsto vprašanj in možnosti za nadaljnji študij omenjene konstrukcije.
V magistrskem delu raziskujemo pomen poldirektnega produkta v teoriji grup in tudi v širšem kontekstu, na primer pri študiju simetrij kombinatoričnih objektov, kot so grafi. Zanima nas, kako poznavanje poldirektnega produkta dopolni znanje o grupah, ki ga daje zgolj poznavanje direktnega produkta in osnovnih standardnih družin grup. Najpomembnejše vprašanje, ki si ga zastavimo, je razdeljeno na dva dela. Po eni strani nas zanima, koliko grup, ki se jih iz manjših grup ne da konstruirati le s pomočjo direktnega produkta grup, lahko dobimo kot poldirektni produkt manjših grup. Po drugi strani nas zanima, kolikšen delež grup s poldirektnim produktom in poznavanjem osnovnih konceptov teorije grup ne zajamemo. Obravnavamo izomorfnost poldirektnih produktov, pri čemer se osredotočimo na poldirektne produkte, pri katerih v vlogi tako imenovanega komplementa edinke nastopa ciklična grupa. Pokažemo, da so grupe specifičnih redov (npr. produkt dveh praštevil) vedno poldirektni produkti. Na konkretnem primeru demonstriramo, kako za nek red, za katerega vemo, da so vse grupe tega reda poldirektni produkti, poiščemo vse grupe tega reda. Osvetlimo pojem spletnega produkta, ki je poseben primer poldirektnega produkta, in ilustriramo, kje se te konstrukcije pojavljajo tudi izven teorije grup, na primer v teoriji grafov.
Glavni namen omenjenega diplomskega dela in tega magistrskega dela je podati širši vpogled v konstrukcijo poldirektnega produkta ter poiskati konkretne zglede uporabe tako v teoriji grup kot tudi izven okvirov abstraktne algebre. Poldirektni produkt je predstavljen na nivoju, ki je primeren za tiste, ki jim osnovni pojmi teorije grup niso tuji, vendar se s poldirektnimi produkti šele spoznavajo.
Ključne besede
direktni produkt grup;poldirektni produkt grup;spletni produkt grup;izomorfnost grup;simetrije;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2015 |
Tipologija: |
2.09 - Magistrsko delo |
Organizacija: |
UL PEF - Pedagoška fakulteta |
Založnik: |
[L. Žnidarič] |
UDK: |
512.54(043.2) |
COBISS: |
10676809
|
Št. ogledov: |
1024 |
Št. prenosov: |
207 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
The relevance of semidirect group product |
Sekundarni povzetek: |
The semidirect product of groups is a generalization of the direct product construction and provides a much larger collection of groups than one is able to obtain only by constructing new groups as direct products of groups that belong to the well-known standard group families.
This MSc thesis is a continuation of the study initiated by the author’s Bachelor’s thesis entitled Semidirect product of groups, which introduced the semidirect product of groups and provided various examples, mostly of semidirect products of cyclic groups. Some interesting results were proved, which however gave rise to several questions and possibilities for further research.
The MSc thesis investigates the relevance of the semidirect product of groups, mostly in group theory, but also in a wider context, e.g. in the field of discrete mathematics, where symmetries of combinatorial objects such as graphs are investigated. We are interested in the question how the knowledge on this construction complements the knowledge on groups, which is obtained only from direct products and basic standard group families. One of the most important questions that we investigate is how many groups, that cannot be constructed as direct products of smaller groups, can be obtained using semidirect products. On the other hand, we are also interested in the question of how many groups cannot be constructed using semidirect products. We investigate isomorphisms of semidirect products, where a cyclic group takes the place of the so-called complement of the normal group. We show that all groups of specific orders (e.g. the product of two prime numbers) are semidirect products. We use a concrete example to demonstrate how to find all groups of a given order if we know that all groups of this order are semidirect products. Finally, we discuss the wreath product, a special case of a semidirect product, and we give examples of where else it is possible to find these constructions beyond group theory, for example in graph theory.
The major objective of this thesis is to provide a detailed insight into the construction of the semidirect product and to find concrete examples of its application in both group theory and further, beyond the borders of abstract algebra. The semidirect product of groups is presented in a way suitable for those familiar with basic notions of group theory, yet still in need of an introduction to semidirect products. |
Sekundarne ključne besede: |
mathematics;matematika; |
Vrsta datoteke: |
application/pdf |
Vrsta dela (COBISS): |
Magistrsko delo/naloga |
Komentar na gradivo: |
Univ. v Ljubljani, Pedagoška fak., Poučevanje, Predmetno poučevanje |
Strani: |
62 str. |
ID: |
8890105 |