Dušan Repovš (Author), Mikhail Zaicev (Author)

Abstract

We study polynomial identities of algebras with adjoined external unit. For a wide class of algebras we prove that adjoining external unit element leads to increasing of PI-exponent precisely to 1. We also show that any real number from the interval ▫$[2,3]$▫ can be realized as PI-exponent of some unital algebra.

Keywords

codimension;exponential growth;fractional PI-exponent;non-associative unital algebra;polynomial identity;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 512.552
COBISS: 17339737 Link will open in a new window
ISSN: 0092-7872
Views: 571
Downloads: 378
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Pages: str. 3823-3839
Volume: ǂVol. ǂ43
Issue: ǂiss. ǂ9
Chronology: 2015
DOI: http://dx.doi.org/10.1080/00927872.2014.924130
ID: 11236292