master's thesis
Abstract
In this work we discuss girth-regular and edge-girth-regular graphs. The signature of a vertex u in a graph is a k-tuple of integers, ordered from the smallest to the largest, where each integer represents the number of girth cycles that contain an edge, incident with u. We say that a graph is girth-regular, if every vertex has the same signature. If every edge is contained in the same number of girth cycles, the graph is edge-girth-regular. We present the known results about girth-regular and edge-girth-regular graphs, classify cubic graphs of both types up to girth 5, look at tetravalent edge-girth-regular graphs and present some constructions of infinite families of such graphs. We then present some new results on tetravalent edge-girth-regular graphs and the classification of tetravalent edge-girth-regular Cayley graphs of Abelian groups.
Keywords
mathematics;graphs;girth;girth-regular;edge-girth-regular;
Data
| Language: |
English |
| Year of publishing: |
2019 |
| Typology: |
2.09 - Master's Thesis |
| Organization: |
UL FMF - Faculty of Mathematics and Physics |
| Publisher: |
[A. Zavrtanik Drglin] |
| UDC: |
519.1 |
| COBISS: |
18739289
|
| Views: |
1178 |
| Downloads: |
240 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
Slovenian |
| Secondary title: |
Ožinsko-regularni in povezavno-ožinsko-regularni grafi |
| Secondary abstract: |
Magistrska naloga obravnava ožinsko-regularne in povezavno-ožinsko-regularne grafe. Podpis vozlišča u v grafu je k-terica celih števil, urejenih po velikosti od najmanjšega do največjega, kjer vsako število predstavlja število ožinskih ciklov, v katerih je vsebovana posamezna povezava, incidenčna z u. Pravimo, da je graf ožinsko-regularen (oz. tipa GR), če imajo vsa vozlišča v grafu enak podpis. Če velja, da je vsaka povezava v grafu vsebovana v enakem številu ožinskih ciklov, pravimo, da je graf povezavno-ožinsko-regularen (oz. tipa EGR). V delu predstavimo že znane rezultate o grafih tipa GR in EGR, posebej natančno pregledamo kubične grafe obeh tipov in tetravalentne grafe tipa EGR ter nekaj konstrukcij neskončnih družin takih grafov. Nato predstavimo nekaj novih rezultatov o grafih tipa EGR in klasifikacijo vseh tetravalentnih Cayleyevih grafov Abelovih grup – kaj mora veljati, da je tak graf lahko tipa EGR, ter v koliko ožinskih ciklih se potemtakem lahko nahaja vsaka povezava tega grafa. |
| Secondary keywords: |
matematika;grafi;ožina;ožinsko-regularen;povezavno-ožinsko-regularen; |
| Type (COBISS): |
Master's thesis/paper |
| Study programme: |
0 |
| Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 2. stopnja |
| Pages: |
XI, 62 str. |
| ID: |
11238051 |