Dušan Repovš (Author), Mikhail Zaicev (Author)

Abstract

We study numerical invariants of identities of finite-dimensional solvable Lie superalgebras. We define new series of finite-dimensional solvable Lie superalgebras L with non-nilpotent derived subalgebra ▫$L'$▫ and discuss their codimension growth. For the first algebra of this series we prove the existence and integrality of ▫$\exp(L)$▫.

Keywords

polynomial identities;Lie superalgebras;graded identities;codimensions;exponential growth;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 512.5/.6
COBISS: 18463833 Link will open in a new window
ISSN: 0949-5932
Views: 553
Downloads: 143
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Type (COBISS): Article
Pages: str. 1189-1199
Volume: ǂVol. ǂ28
Issue: ǂno. ǂ4
Chronology: 2018
ID: 11270669
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available