Abstract
In this paper, we study the following ▫$p(x)$▫-curl systems: ▫$$\begin{cases} \nabla \times (|\nabla \times \mathbf{u}|^{p(x)-2}\nabla \times \mathbf{u}) + a(x)|\mathbf{u}|^{p(x)-2}\mathbf{u} = \lambda f(x, \mathbf{u}) + \mu g(x, \mathbf{u}), \quad \nabla \cdot \mathbf{u} & \text{in} \; \Omega, \\ |\nabla \times \mathbf{u}|^{p(x)-2}\nabla \times \mathbf{u} \times \mathbf{n} = 0, \quad \mathbf{u} \cdot \mathbf{n} = 0 & \text{on} \; \partial\Omega, \end{cases}$$▫ where ▫$\Omega \subset \mathbb{R}^3$▫ is a bounded simply connected domain with a ▫$C^{1,1}$▫-boundary, denoted by ▫$\delta\Omega$▫, ▫$p \colon \overline{\Omega} \to (1, +\infty)$▫ is a continuous function, ▫$a \in L^\infty(\Omega$▫, ▫$f, g \colon \Omega \times \mathbb{R}^3 \to \mathbb{R}^3$▫ are Carathéodory functions, and ▫$\lambda, \mu$▫ are two parameters. Using variational arguments based on Fountain theorem and Dual Fountain theorem, we establish some existence and non-existence results for solutions of this problem. Our main results generalize the results of Xiang, Wang and Zhang (J. Math. Anal. Appl., 2016), Bahrouni and Repovš (Complex Var. Elliptic Equ., 2018), and Bin and Fang (Mediterr. J. Math., 2019).
Keywords
variable exponent;p(x)-curl system;Palais Smale compactness condition;Fountain theorem;Dual Fountain theorem;existence of solutions;multiplicity of solutions;electromagnetism;
Data
Language: |
English |
Year of publishing: |
2020 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
517.956.2 |
COBISS: |
18900057
|
ISSN: |
0022-247X |
Views: |
578 |
Downloads: |
378 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Type (COBISS): |
Article |
Pages: |
art. 123898 [18 str.] |
Volume: |
ǂVol. ǂ486 |
Issue: |
ǂiss.ǂ2 |
Chronology: |
June 2020 |
DOI: |
10.1016/j.jmaa.2020.123898 |
ID: |
11404448 |