Povzetek
 
We are interested in the existence of solutions for the following fractional ▫$p(x,\cdot)$▫-Kirchhoff-type problem: ▫$$\textstyle\begin{cases} M ( \int _{\Omega \times \Omega } {\frac{ \vert u(x)-u(y) \vert ^{p(x,y)}}{p(x,y) \vert x-y \vert ^{N+p(x,y)s}}} \,dx \,dy )(-\Delta )^{s}_{p(x,\cdot )}u = f(x,u), \quad x\in \Omega , \\ u= 0, \quad x\in \partial \Omega , \end{cases}$$▫ where ▫$\Omega \subset \mathbb{R}^{N}$▫,▫$ N\geq 2$▫ is a bounded smooth domain, ▫$s\in (0,1)$▫, ▫$p: \overline{\Omega }\times \overline{\Omega } \rightarrow (1, \infty )$▫, ▫$(-\Delta )^{s}_{p(x,\cdot)}$▫ denotes the ▫$p(x,\cdot )$▫-fractional Laplace operator, ▫$M: [0,\infty ) \to [0, \infty )$▫, and ▫$f: \Omega \times \mathbb{R} \to \mathbb{R}$▫ are continuous functions. Using variational methods, especially the symmetric mountain pass theorem due to Bartolo-Benci-Fortunato (Nonlinear Anal. 7(9):981-1012, 1983), we establish the existence of infinitely many solutions for this problem without assuming the Ambrosetti-Rabinowitz condition. Our main result in several directions extends previous ones which have recently appeared in the literature.
    Ključne besede
 
fractional ▫$p(x,\cdot)$▫-Kirchhoff-type problems;▫$p(x,\cdot)$▫-fractional Laplace operator;Ambrosetti-Rabinowitz type conditions;symmetric mountain pass theorem;Cerami compactness condition;fractional Sobolev spaces with variable exponent;multiplicity of solutions;
    Podatki
 
    
        
            | Jezik: |  
            Angleški jezik | 
        
        
        
            | Leto izida: |  
            2020 | 
        
            
        
        
            | Tipologija: |  
            1.01 - Izvirni znanstveni članek |         
        
            
        
            | Organizacija: |  
            UL FMF - Fakulteta za matematiko in fiziko |         
        
        
            | UDK: |  
            517.956 |         
        
   
        
        
            | COBISS: |  
            
                
                    28792835
                     
                
             | 
        
        
        
            | ISSN: |  
            1687-2770 | 
        
        
  
        
            | Št. ogledov: |  
            418 | 
        
        
        
            | Št. prenosov: |  
            122 | 
        
        
        
            | Ocena: |  
            0 (0 glasov) | 
        
        
            | Metapodatki: |  
            
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
             | 
        
    
    
    Ostali podatki
 
    
        
        
        
        
        
            
        
            | Vrsta dela (COBISS): |  
            Članek v reviji | 
        
        
        
           
        
           
        
           
        
           
        
           
        
           
        
           
        
            | Strani: |  
            art. 150, str. 1-16 | 
        
        
           
        
            | Letnik: |  
            ǂVol. ǂ2020 | 
        
        
           
        
            | Zvezek: |  
            ǂiss. ǂ1 | 
        
        
           
        
            | Čas izdaje: |  
            Dec. 2020 | 
        
        
           
        
           
        
           
        
            | DOI: |  
            10.1186/s13661-020-01447-9 | 
        
        
           
        
           
        
          
        
          
        
          
        
         
        
         
        
        
            | ID: |  
            12042780 |