Abstract
Tip pokritja prostora ▫$X$▫ je homotopska invarianta, ki v določenem smislu meri homotopsko velikost ▫$X$▫. Vpeljala sta jo Karoubi in Weibel kot minimalno moč dobrega pokritja prostora ▫$Y$▫ med vsemi prostori ▫$Y$▫, ki so homotopsko ekvivalentni ▫$X$▫. V članku podamo vrsto ocen za tip pokritja pomočjo drugih homotopskih invariant, med katerimi izstopajo homološke grupe, kohomološki kolobar in Lusternik-Schnirelmannova kategorija. Poleg tega v članku povežemo tip pokritja poliedra s številom oglišč v minimalni triangulaciji. Tako izpeljemo na enovit način vrsto ocen, ki so bodisi nove, bodisi posplošitve ocen, ki so v preteklosti slonele na ad hoc kombinatornih ocenah.
Keywords
tip pokritja;minimalna triangulacija;Lusternik-Schnirelmannova kategorija;dolžina kohomološkega produkta;covering type;minimal triangulation;Lusternik-Schnirelmann category;cup-length;
Data
Language: |
English |
Year of publishing: |
2020 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
515.14 |
COBISS: |
18627417
|
ISSN: |
0179-5376 |
Views: |
496 |
Downloads: |
239 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Ocene tipa pokritja in števila oglišč v minimalnih triangulacijah |
Secondary abstract: |
The covering type of a space ▫$X$▫ is a numerical homotopy invariant which in some sense measures the homotopical size of ▫$X$▫. It was first introduced by Karoubi and Weibel (in Enseign Math 62(3-4):457-474, 2016) as the minimal cardinality of a good cover of a space ▫$Y$▫ taken among all spaces that are homotopy equivalent to ▫$X$▫. We give several estimates of the covering type in terms of other homotopy invariants of ▫$X$▫, most notably the ranks of the homology groups of ▫$X$▫, the multiplicative structure of the cohomology ring of ▫$X$▫ and the Lusternik-Schnirelmann category of ▫$X$▫. In addition, we relate the covering type of a triangulable space to the number of vertices in its minimal triangulations. In this way we derive within a unified framework several estimates of vertex-minimal triangulations which are either new or extensions of results that have been previously obtained by ad hoc combinatorial arguments. |
Secondary keywords: |
tip pokritja;minimalna triangulacija;Lusternik-Schnirelmannova kategorija;dolžina kohomološkega produkta; |
Pages: |
str. 31-48 |
Volume: |
ǂVol. ǂ63 |
Issue: |
ǂiss. ǂ1 |
Chronology: |
Jan. 2020 |
DOI: |
10.1007/s00454-019-00092-z |
ID: |
11551956 |