Dušan Repovš (Author), Mikhail Zaicev (Author)

Abstract

We construct a family of unital non-associative algebras ▫$\{ T_\alpha | 2 < \alpha \in \mathbb{R} \}$▫ such that ▫$\underline{exp}(T_\alpha) = 2$▫, whereas ▫$\alpha \le \overline{exp} (T_\alpha) \le \alpha + 1$▫. In particular, it follows that ordinary PI-exponent of codimension growth of algebra ▫$T_\alpha$▫ does not exist for any ▫$\alpha > 2$▫. This is the first example of a unital algebra whose PI-exponent does not exist.

Keywords

polynomial identities;exponential codimension growth;PI-exponent;unital algebra;numerical invariant;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 512.552
COBISS: 20166147 Link will open in a new window
ISSN: 2688-1594
Views: 518
Downloads: 185
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Type (COBISS): Article
Pages: str. 853-859
Volume: ǂVol. ǂ28
Issue: ǂno. ǂ2
Chronology: June 2020
DOI: 10.3934/era.2020044
ID: 11852109
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available
, no subtitle data available