diplomsko delo
Mija Lavrič (Author), Marko Slapar (Mentor)

Abstract

V diplomskem delu obravnavamo matrične norme na algebri M_n kvadratnih n×n kompleksnih matrik. Matrične norme so vektorke norme na M_n, za katere dodatno predpostavimo submultiplikativnost. Posebno pozornost namenimo operatorskim normam, ki so inducirane z vektorskimi normami na C^n. Obravnavamo tudi spektralni radij matrik in pokažemo, da je spektralni radij največja spodnja meja za vrednosti vseh matričnih norm matrike.

Keywords

številske vrste;funkcijske vrste;enakomerna konvergenca;potenčne vrste;trigonometrične funkcije;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL PEF - Faculty of Education
Publisher: [M. Lavrič]
UDC: 512.643.3(043.2)
COBISS: 28289795 Link will open in a new window
Views: 270
Downloads: 27
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Matrix norms
Secondary abstract: In this diploma thesis we study matrix norms on the algebra M_n of square n×n complex matrices. Matrix norms are vector norms on M_nthat are also submultiplicative. We especially focus on operator norms that are induced by vector norms on C^n. We also introduce the spectral radius of a matrix and show that the spectral radius of a matrix is the greatest lower bound for the values of all matrix norms of the matrix.
Secondary keywords: mathematics;matematika;
File type: application/pdf
Type (COBISS): Bachelor thesis/paper
Thesis comment: Univ. v Ljubljani, Pedagoška fak., Dvopredmetni učitelj: Fizika-matematika
Pages: 20 str.
ID: 12023601
Recommended works:
, diplomsko delo
, diplomsko delo
, diplomsko delo
, zbirka rešenih nalog