Vincenzo Ambrosio (Author), Dušan Repovš (Author)

Abstract

In this paper, we study the multiplicity and concentration of positive solutions for the following ▫$(p, q)$▫-Laplacian problem: ▫$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta _{p} u -\Delta _{q} u +V(\varepsilon x) \left( |u|^{p-2}u + |u|^{q-2}u\right) = f(u) &{} \text{ in } {\mathbb{R}}^{N}, \\ u\in W^{1, p}({\mathbb{R}}^{N})\cap W^{1, q}({\mathbb{R}}^{N}), \quad u>0 \text{ in } {\mathbb{R}}^{N}, \end{array} \right. \end{aligned}$$▫ where ▫$\varepsilon >0$▫ is a small parameter, ▫$1

Keywords

(p, q)-Laplacian problem;positive solutions;variational methods;Ljusternik-Schnirelmann theory;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 517.956
COBISS: 47945731 Link will open in a new window
ISSN: 0044-2275
Views: 346
Downloads: 121
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Embargo end date (OpenAIRE): 2021-07-01
Pages: art. 33 (33 str.)
Volume: ǂVol. ǂ72
Issue: ǂiss. ǂ1
Chronology: Feb. 2021
DOI: 10.1007/s00033-020-01466-7
ID: 12441000