Povzetek
In the present work we study the multiplicity and concentration of positive solutions for the following class of Kirchhoff problems: ▫$$\begin{cases}-(\varepsilon^2a+\varepsilon b\int _{\mathbb{R}^3}|\nabla u|^2 dx) \Delta u + V(x)u = f(u)+\gamma u^5 & \text{in} \; \mathbb{R}^3, \\ u \in H^1(\mathbb{R}^3), \quad u>0 & \text{in} \; \mathbb{R}^3, \end{cases}$$▫ where ▫$\varepsilon>0$▫ is a small parameter, ▫$a,b>0$▫ are constants, ▫$\gamma \in {0,1}$▫, ▫$V$▫ is a continuous positive potential with a local minimum, and ▫$f$▫ is a superlinear continuous function with subcritical growth. The main results are obtained through suitable variational and topological arguments. We also provide a multiplicity result for a supercritical version of the above problem by combining a truncation argument with a Moser-type iteration. Our theorems extend and improve in several directions the studies made in (Adv. Nonlinear Stud. 14 (2014), 483-510; J. Differ. Equ. 252 (2012), 1813-1834; J. Differ. Equ. 253 (2012), 2314-2351).
Ključne besede
Kirchhoff problems;penalization method;Ljusternik-Schnirelmann theory;critical growth;supercritical exponent;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2022 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
UDK: |
517.956 |
COBISS: |
43614723
|
ISSN: |
0921-7134 |
Št. ogledov: |
168 |
Št. prenosov: |
60 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Vrsta dela (COBISS): |
Članek v reviji |
Strani: |
str. 1-43 |
Letnik: |
ǂVol. ǂ126 |
Zvezek: |
ǂiss. ǂ1-2 |
Čas izdaje: |
2022 |
DOI: |
10.3233/ASY-201660 |
ID: |
14119068 |