magistrsko delo
Timotej Volavšek (Author), Ivan Bratko (Mentor)

Abstract

Zaradi hitrega razvoja in vsak dan širše prisotnih praktičnih aplikacij umetne inteligence se vse bolj pojavlja tudi potreba po razumljivosti inteligentnih sistemov. S tem problemom se ukvarja področje razložljive umetne inteligence, ki stremi k razvoju umetne inteligence z zmožnostjo razlage svojih odločitev na človeku razumljiv način. Zanimalo nas je, ali lahko s strojnim učenjem na podlagi človeških razlag rešitev nalog planiranja sestavimo algoritem za avtomatsko generiranje razlag planov. S tem namenom smo izvedli poskus, v katerem so udeleženci razložili svoje odločitve tekom reševanja problemov iz domene sveta kock. Njihove razlage smo pretvorili v obliko, primerno za strojno učenje, in jih uporabili za indukcijo odločitvenega drevesa. Na podlagi naučenega klasifikatorja lahko algoritem za planiranje nato izbere ustrezno vrsto razlage za vsako svojo akcijo. Tako dobimo razlage, ki so bolj podobne človeškim in posledično bolj razumljive. Razložljiva umetna inteligenca na podlagi učenja iz človeških razlag je na področju planiranja še neraziskana ideja. Naši rezultati predstavljajo prvi poskus s tem pristopom. Odpirajo tudi možnost številnih praktičnih aplikacij na drugih, bolj kompleksnih domenah planiranja.

Keywords

razložljiva umetna inteligenca;planiranje;razložljivo planiranje;strojno učenje;svet kock;človeške razlage;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL PEF - Faculty of Education
Publisher: [T. Volavšek]
UDC: 004.89(043.2)
COBISS: 72797187 Link will open in a new window
Views: 209
Downloads: 10
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Explanation in artificial intelligence based on machine learning from human explanations
Secondary abstract: The fast progress in artificial intelligence (AI), combined with the constantly widening scope of its practical applications also necessitates the need for AI to be understandable to humans. This issue is the key focus of the field of Explainable AI, which aims to develop approaches to AI which would make its decisions and actions more comprehensible to humans interacting with it. We used machine learning from examples of human explanations to develop an algorithm which can automatically generate explanations of its problem-solving process in natural language. Specifically, it explains plans in the blocks world domain. We recorded human participants explaining the reasons for their actions as they solved blocks world problems, and transformed their explanations into a form which could then be used for machine learning. We used these examples to induce a classifier which our planner can use to select an appropriate explanation in any given situation. The use of machine learning from human explanations is a hitherto unexplored idea in explainable planning. Our results represent the first demonstration of this approach. This opens the possibility of numerous practical applications on other, more complex planning domains.
Secondary keywords: cognitive psychology;artificial intelligence;kognitivna psihologija;umetna inteligenca;
File type: application/pdf
Type (COBISS): Master's thesis/paper
Thesis comment: Univ. v Ljubljani, Skupni interdisciplinarni študijski program druge stopnje Kognitivna znanost, v sodelovanju z Universität Wien, Univerzita Komenského v Bratislave in Eötvös Loránd Tudományegyetem
Pages: 48 str.
ID: 13230095
Recommended works:
, s Pythonom do prvega klasifikatorja
, delo diplomskega seminarja