magistrsko delo
Arben Jahiri (Author), Dušan Gleich (Mentor)

Abstract

V magistrskem delu je opisan in predstavljen postopek zaznave in razpoznave obraza s pomočjo radarske in laserske tehnike. V prvem delu je opisano delovanje radarja in predstavljeni postopki postavitev tarč v vidno območje radarja ter procesiranje signalov za pridobitev končne slike. V drugem delu je prikazan postopek zajemanja slik zaznanih obrazov s Kinectom in učenje modela s Siamsko nevronsko mrežo za razpoznavanje obrazov. V sklepu so predstavljeni rezultati raziskave in preverjanja zaznave ter razpoznave obraza z radarjem in s Kinectom.

Keywords

frekvenčno modulirani radarji s kontinuiranim signalom;radar z umetno odprtino;programski jezik MATLAB;orodje Kinect;zaznava in razpoznava obraza;Siamska nevronska mreža;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UM FERI - Faculty of Electrical Engineering and Computer Science
Publisher: [A. Jahiri]
UDC: 621.396:004.93'1(043.2)
COBISS: 89845251 Link will open in a new window
Views: 278
Downloads: 20
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Face recognition using lidar and radar techniques
Secondary abstract: The master's thesis describes and presents the process of face detection and recognition using radar and lidar techniques. The first part describes the operation of the radar and presents the procedures for placing targets in the visible area of the radar and processing signals to obtain the final image. The second part shows the process of capturing images of perceived faces with Kinect and training of the model with Siamese neural network for face recognition. The conclusion presents the results of research and verification of face detection and recognition with radar and Kinect.
Secondary keywords: Frequency modulated continuous wave radar;Synthetic aperture radar;MATLAB;Kinect;Face detection and recognition;Siamese neural network;
Type (COBISS): Master's thesis/paper
Thesis comment: Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Elektrotehnika
Pages: IX, 97 str.
ID: 13283440