doctoral dissertation
    	
    Abstract
 
The development of a chromatographic method often involves a trial-and-error approach until 
the set criteria are met. The advantage of such a tactic is the development of an adequate 
method in a relatively short period of time. However, the lack of a systematic approach may 
lead us in a local optimum and unaware of the critical parameters that affect separation. This 
severely hinders our ability to troubleshoot when the performance of the method falls out of 
the accepted range. The educational guesses of chromatography experts can solve many 
problems encountered when separating on a column with a single retention mode.
Unfortunately, such knowledge is not sufficient to decipher the optimal path to improve
separation on a mixed mode stationary phase. The presence of multiple retention 
mechanisms in combination with very complex molecules such as proteins and other 
biomolecules renders such predictions extremely difficult. In this case, a good optimization 
path is the Quality by Design approach. Therefore, the aim of this study is to understand the 
principles of the governing factors. Our work began with screening the most suitable 
stationary phase chemistry for the separation of seven insulin variants commonly used in the 
treatment of diabetes mellitus. Before optimizing the composition of the mobile phase and 
gradients of acetonitrile content, buffer concentration, and pH value, we focused on the often 
neglected effects of temperature and pressure on separation efficiency. These effects were 
studied separately on appropriate single mode columns, as the selected mixed mode column 
included a reversed-phase and anion exchange mechanism. The effect of temperature on the 
separation of insulin is opposite to that of small molecules on both columns up to 55 °C. At 
higher temperature, the separation of insulin on the anion exchange column shows a similar 
trend as before. On the reversed phase and temperatures above 55 °C, insulin retains like a 
small molecule. The effect of pressure was observed only on the reversed-phase and the 
mixed mode column. In these cases, the retention of insulins increased significantly even 
when the column inlet pressure was increased by 100 bar. The retention of small molecules 
was only slightly affected. This was not observed for separations on an anion exchange column 
due to the non-denaturing mobile phase and thus the stability of the insulin molecule. This 
pressure effect on an anion exchange column was further studied with a probe molecules 
(oligonucleotides of different lengths), larger proteins (BSA and thyroglobulin) and a plasmid 
DNA molecule. A significant increase in retention time was observed for isocratic and gradient 
separations, which was dependent on the size and flexibility of the molecules. To investigate 
the adsorption mechanism, these separations were described using stoichiometric 
displacement and linear gradient elution models. A pressure and ionic strength dependence 
of distribution constant was developed and derived to obtain partial molar volume changes. 
Analysis of the calculated parameters indicated a compression of the macromolecules 
towards the stationary phase upon adsorption. This enabled the molecules to have more 
interactions with the stationary phase.
Finally, we conducted a systematic study of the influence of mobile phase composition on the 
separation efficiency of seven insulin variants and two excipients on a mixed mode column. In 
addition, an SPE purification procedure was developed to remove interferences present in the 
formulations. Two separation methods were developed, each suitable for the separation of 
nine molecules on HPLC systems with either binary or quaternary solvent delivery system. The 
methods enable the quantification of human insulin and the six most commonly used 
therapeutic analogues in formulations or pharmaceutical raw materials.
    Keywords
 
chromatography;mixed mode;high pressure;macromolecules;insulin;
    Data
 
    
        
            | Language: | English | 
        
        
            | Year of publishing: | 2021 | 
            
        
        
            | Typology: | 2.08 - Doctoral Dissertation | 
            
        
            | Organization: | UL FKKT - Faculty of Chemistry and Chemical Technology | 
        
            | Publisher: | [A. Kristl] | 
   
        
            | UDC: | 543.544.5.068.7:66.081.312(043.3) | 
   
        
        
            | COBISS: | 84714755   | 
        
        
  
        
            | Views: | 360 | 
        
        
            | Downloads: | 89 | 
        
        
            | Average score: | 0 (0 votes) | 
        
            | Metadata: |                       | 
    
    
    Other data
 
    
        
            | Secondary language: | Slovenian | 
        
        
            | Secondary title: | Uporaba kromatografije z mešanimi režimi za separacijo biološko pomembnih molekul | 
        
        
        
            | Secondary abstract: | Razvoj metode kromatografske metode pogosto vključuje pristop poskusov in napak, dokler 
ne dosežemo zastavljenih kriterijev. Prednost takšnega načina je razvoj ustrezne metode v 
sorazmerno kratkem času. Pomanjkanje sistematičnega pristopa pa nas lahko vodi v lokalni 
optimum s slabim poznavanjem kritičnih parametrov, ki vplivajo na ločevanje. To močno ovira 
našo zmožnost odpravljanja težav, kadar učinkovitost metode pade iz sprejemljivega obsega. 
Nasveti strokovnjakov na podlagi izkušenj iz kromatografije lahko rešijo številne težave, ki se 
pojavijo pri ločevanju na koloni z enim samim načinom zadrževanja. Na žalost takšno znanje 
ne zadošča za dešifriranje optimalne poti za pravilno ločitev na stacionarni fazi z mešanim 
režimom. Prisotnost več mehanizmov zadrževanja v kombinaciji z zelo zapletenimi 
molekulami, kot so beljakovine in druge biomolekule, onemogoča takšne napovedi. Za take 
primere lahko optimizacijo dosežemo z metodo vgrajene kakovosti (angl. Quality by Design). 
Zato je cilj te študije spoznati in razumeti vodilne dejavnike pri razvoju tovrstnih separacijskih 
metod. Naše delo se je začelo s pregledom najprimernejših kemijskih lastnosti stacionarnih faz
za ločevanje sedmih variant inzulina, ki se pogosto uporabljajo pri zdravljenju diabetesa 
mellitusa. Pred optimizacijo sestave mobilne faze in gradientov vsebnosti acetonitrila, 
koncentracije pufra in pH smo se osredotočili na vpliv temperature in tlaka, ki sta pogosto 
zanemarjena dejavnika na učinkovitost ločevanja. Te učinke smo preučevali ločeno na 
ustreznih kolonah z enim mehanizmom zadrževanja, da smo izsledke lahko uporabili na koloni 
z anionsko izmenjevalnim in reverznofaznim mehanizmom ločevanja. Vpliv temperature na 
ločevanje inzulina je nasproten učinku majhnih molekul na obeh kolonah do 55 °C. Pri višji 
temperaturi poteka ločevanje inzulina na anionsko izmenjevalni koloni podobno kot prej, na 
reverznifazi pa se zadržuje kot majhna molekula. Vpliv tlaka smo opazili le na RP koloni in 
koloni z mešanimi režimi. V teh primerih se je zadrževanje inzulinov znatno povečalo, tudi ko 
se je tlak pri vstopu v koloni povečal za 100 barov. Na zadrževanje majhnih molekul je bil vpliv 
tlaka precej manjši. Tega niso opazili pri ločevanju na anionsko izmenjevalni koloni zaradi 
nedenaturirajoče mobilne faze in s tem stabilnosti molekule inzulina. Ta učinek tlaka na 
anionsko izmenjevalni koloni smo nadalje preučevali z modelnimi molekulami (oligonukleotidi 
različnih dolžin), večjimi beljakovinami (BSA in tiroglobulin) in molekulo plazmidne DNA. 
Opazili smo znatno povečanje zadrževalnega časa pri izokratskih in gradientnih ločbah, kar je 
bilo odvisno od velikosti in fleksibilnosti molekul. Za raziskovanje adsorpcijskega mehanizma 
smo ta ločevanja opisali z uporabo modelov stehiometrične izmenjave in linearne gradiente
elucije. Razvili smo model odvisnost porazdelitvene konstante od tlaka in ionske jakosti, z 
odvajanjem tega pa smo izračunali spremembe parcialnega molskega volumna. Analiza 
izračunanih parametrov je pokazala kompresijo makromolekul proti stacionarni fazi ob 
adsorpciji, česar posledica je več interakcij s stacionarno fazo.
Na koncu smo izvedli še sistematično študijo vpliva sestave mobilne faze na učinkovitost 
ločevanja sedmih variant inzulina in dveh pomožnih snovi na koloni z mešanimi režimi. Poleg 
tega smo razvili postopek čiščenja SPE za odstranjevanje motenj, prisotnih v formulacijah. 
Razvili smo dve metodi ločevanja, vsaka primerna za ločevanje devetih molekul na HPLC 
sistemih z binarnim ali kvartarnim sistemom za dovajanje topila. Metode omogočajo 
kvantificiranje človeškega inzulina in šestih najpogosteje uporabljenih terapevtskih analogov 
v formulacijah ali farmacevtskih surovinah. | 
        
        
            | Secondary keywords: | kromatografske metode;kromatografija z mešanimi režimi;biomolekule;proteini;oligonukleotidi;plazmidna DNK;visok tlak;ultra viokotlačna tekočinska kromatografija;UHPLC;doktorske disertacije;Biomolekule;Disertacije;Separacija; | 
        
            
        
            | Type (COBISS): | Doctoral dissertation | 
        
        
            | Study programme: | 1000381 | 
        
           
        
           
        
           
        
            | Embargo end date (OpenAIRE): | 1970-01-01 | 
        
           
        
            | Thesis comment: | Univ. v Ljubljani, Fak. za kemijo in kemijsko tehnologijo | 
        
           
        
           
        
           
        
            | Pages: | VII, 128 str. | 
        
           
        
           
        
           
        
           
        
           
        
           
        
           
        
           
        
          
        
          
        
          
        
         
        
         
        
        
            | ID: | 13587577 |