master's thesis
Abstract
With the widespread use of smartphones, wearable devices and many applications of deep learning (DL), there is a growing interest in deploying DL on low-power devices. However, due to inferior computational resources and battery capacity limitations, this is a challenging task. One solution to this problem stems from approximate computing – by using approximations, we can sacrifice accuracy for better energy-efficiency. We develop an end-to-end system for adaptive approximate mobile computing (AMC), which enables transforming high-level definitions of convolutional neural networks into approximable DL models suitable for deployment within Android applications. We define ways of adaptively selecting among approximation levels to achieve better energy-efficiency of DL on smartphones while preserving the option of using non-approximated neural network variants. We evaluate the benefits of adaptive AMC on a concrete use case.
Keywords
ubiquitous computing;adaptive approximations;approximate computing;compilers;Android;deep learning;computer science;computer and information science;master's thesis;
Data
Language: |
English |
Year of publishing: |
2021 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL FRI - Faculty of Computer and Information Science |
Publisher: |
[M. Fabjančič] |
UDC: |
004.382.73/.77(043.2) |
COBISS: |
84027395
|
Views: |
233 |
Downloads: |
49 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Približno računanje na ravni prevajalnika na mobilnih napravah |
Secondary abstract: |
Razširjenost pametnih naprav, kot so telefoni in ure, skupaj z množično uporabo aplikacij globokega učenja kličeta po uporabi modelov globokega učenja na napravah nizke zmogljivosti. Zaradi računske zahtevnosti globokega učenja pa je to na napravah z omejenimi računskimi viri težko izvedljivo. Z vpeljavo približnega računanja v modele globokega učenja lahko za ceno natančnosti modelov prihranimo na porabljeni energiji. V tej nalogi razvijemo enoviti sistem za prilagodljivo približno računanje na mobilnih napravah. Sistem omogoča, da visoko nivojske opise nevronskih mrež pretvorimo v modele z nastavljivo približnostjo in jih uporabimo v aplikacijah za naprave z operacijskim sistemom Android. Na primeru uporabe pokažemo, da lahko z različnimi sistemi samodejnega prilagajanja približnosti modelov dosežemo boljšo energijsko učinkovitost modelov na mobilnih napravah in ohranimo možnost klasifikacije z neaproksimirano nevronsko mrežo. |
Secondary keywords: |
vseprisotno računanje;prilagodljivo aproksimiranje;približno računanje;prevajalniki;Android;globoko učenje;računalništvo in informatika;magisteriji;Računalništvo;Univerzitetna in visokošolska dela; |
Type (COBISS): |
Master's thesis/paper |
Study programme: |
1000471 |
Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Pages: |
VIII, 66 str. |
ID: |
13826395 |