master's thesis

Abstract

With the widespread use of smartphones, wearable devices and many applications of deep learning (DL), there is a growing interest in deploying DL on low-power devices. However, due to inferior computational resources and battery capacity limitations, this is a challenging task. One solution to this problem stems from approximate computing – by using approximations, we can sacrifice accuracy for better energy-efficiency. We develop an end-to-end system for adaptive approximate mobile computing (AMC), which enables transforming high-level definitions of convolutional neural networks into approximable DL models suitable for deployment within Android applications. We define ways of adaptively selecting among approximation levels to achieve better energy-efficiency of DL on smartphones while preserving the option of using non-approximated neural network variants. We evaluate the benefits of adaptive AMC on a concrete use case.

Keywords

ubiquitous computing;adaptive approximations;approximate computing;compilers;Android;deep learning;computer science;computer and information science;master's thesis;

Data

Language: English
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [M. Fabjančič]
UDC: 004.382.73/.77(043.2)
COBISS: 84027395 Link will open in a new window
Views: 233
Downloads: 49
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Približno računanje na ravni prevajalnika na mobilnih napravah
Secondary abstract: Razširjenost pametnih naprav, kot so telefoni in ure, skupaj z množično uporabo aplikacij globokega učenja kličeta po uporabi modelov globokega učenja na napravah nizke zmogljivosti. Zaradi računske zahtevnosti globokega učenja pa je to na napravah z omejenimi računskimi viri težko izvedljivo. Z vpeljavo približnega računanja v modele globokega učenja lahko za ceno natančnosti modelov prihranimo na porabljeni energiji. V tej nalogi razvijemo enoviti sistem za prilagodljivo približno računanje na mobilnih napravah. Sistem omogoča, da visoko nivojske opise nevronskih mrež pretvorimo v modele z nastavljivo približnostjo in jih uporabimo v aplikacijah za naprave z operacijskim sistemom Android. Na primeru uporabe pokažemo, da lahko z različnimi sistemi samodejnega prilagajanja približnosti modelov dosežemo boljšo energijsko učinkovitost modelov na mobilnih napravah in ohranimo možnost klasifikacije z neaproksimirano nevronsko mrežo.
Secondary keywords: vseprisotno računanje;prilagodljivo aproksimiranje;približno računanje;prevajalniki;Android;globoko učenje;računalništvo in informatika;magisteriji;Računalništvo;Univerzitetna in visokošolska dela;
Type (COBISS): Master's thesis/paper
Study programme: 1000471
Thesis comment: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Pages: VIII, 66 str.
ID: 13826395