Ciril Bohak (Author), Matej Slemenik (Author), Jaka Kordež (Author), Matija Marolt (Author)

Abstract

Direct point-cloud visualisation is a common approach for visualising large datasets of aerial terrain LiDAR scans. However, because of the limitations of the acquisition technique, such visualisations often lack the desired visual appeal and quality, mostly because certain types of objects are incomplete or entirely missing (e.g., missing water surfaces, missing building walls and missing parts of the terrain). To improve the quality of direct LiDAR point-cloud rendering, we present a point-cloud processing pipeline that uses data fusion to augment the data with additional points on water surfaces, building walls and terrain through the use of vector maps of water surfaces and building outlines. In the last step of the pipeline, we also add colour information, and calculate point normals for illumination of individual points to make the final visualisation more visually appealing. We evaluate our approach on several parts of the Slovenian LiDAR dataset.

Keywords

LiDAR;oblaki točk;vizualizacija oblakov točk;rekonstrukcija terena;rekonstrukcija vodnih površin;point-clouds;point-cloud visualisation;terrain reconstruction;water surface reconstruction;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FRI - Faculty of Computer and Information Science
UDC: 004
COBISS: 1538566595 Link will open in a new window
ISSN: 1424-8220
Views: 182
Downloads: 47
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary keywords: LiDAR;oblaki točk;vizualizacija oblakov točk;rekonstrukcija terena;rekonstrukcija vodnih površin;
Type (COBISS): Article
Pages: str. 1-17
Volume: ǂVol. ǂ20
Issue: ǂno. ǂ7
Chronology: Apr. 2020
DOI: 10.3390/s20072089
ID: 14010147
Recommended works:
, magistrsko delo magistrskega študijskega programa II. stopnje Strojništvo