Abstract

A double Roman dominating function on a graph G = (V, E) is a function f : V → {0, 1, 2, 3} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex assigned 3 or at least two vertices assigned 2, and every vertex u with f(u) = 1 is adjacent to at least one vertex assigned 2 or 3. The weight of f equals w(f) = ∑$_{v∈V}$ f(v). The double Roman domination number γ$_{dR}$(G) of a graph G equals the minimum weight of a double Roman dominating function of G. We obtain closed expressions for the double Roman domination number of generalized Petersen graphs P(5k, k). It is proven that γ$_{dR}$(P(5k, k)) = 8k for k ≡ 2, 3 mod 5 and 8k ≤ γ$_{dR}$(P(5k, k)) ≤ 8k + 2 for k ≡ 0, 1, 4 mod 5. We also improve the upper bounds for generalized Petersen graphs P(20k, k).

Keywords

double Roman domination;generalized Petersen graph;discharging method;graph cover;double Roman graph;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FS - Faculty of Mechanical Engineering
UDC: 519.17
COBISS: 93020931 Link will open in a new window
ISSN: 2227-7390
Views: 153
Downloads: 60
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary keywords: dvojna rimska dominacija;posplošeni Petersonovi grafi;pokritja grafov;
Type (COBISS): Article
Pages: str. 1-19
Volume: ǂVol. ǂ10
Issue: ǂiss. ǂ1
Chronology: Jan. 2022
DOI: 10.3390/math10010119
ID: 14305981
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available
, no subtitle data available