Povzetek
A double Roman dominating function on a graph G = (V, E) is a function f : V → {0, 1, 2, 3} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex assigned 3 or at least two vertices assigned 2, and every vertex u with f(u) = 1 is adjacent to at least one vertex assigned 2 or 3. The weight of f equals w(f) = ∑$_{v∈V}$ f(v). The double Roman domination number γ$_{dR}$(G) of a graph G equals the minimum weight of a double Roman dominating function of G. We obtain closed expressions for the double Roman domination number of generalized Petersen graphs P(5k, k). It is proven that γ$_{dR}$(P(5k, k)) = 8k for k ≡ 2, 3 mod 5 and 8k ≤ γ$_{dR}$(P(5k, k)) ≤ 8k + 2 for k ≡ 0, 1, 4 mod 5. We also improve the upper bounds for generalized Petersen graphs P(20k, k).
Ključne besede
double Roman domination;generalized Petersen graph;discharging method;graph cover;double Roman graph;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2022 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UL FS - Fakulteta za strojništvo |
UDK: |
519.17 |
COBISS: |
93020931
|
ISSN: |
2227-7390 |
Št. ogledov: |
153 |
Št. prenosov: |
60 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Slovenski jezik |
Sekundarne ključne besede: |
dvojna rimska dominacija;posplošeni Petersonovi grafi;pokritja grafov; |
Vrsta dela (COBISS): |
Članek v reviji |
Strani: |
str. 1-19 |
Letnik: |
ǂVol. ǂ10 |
Zvezek: |
ǂiss. ǂ1 |
Čas izdaje: |
Jan. 2022 |
DOI: |
10.3390/math10010119 |
ID: |
14305981 |