Abstract
A double Roman dominating function on a graph G=(V,E) is a function f:V->{0,1,2,3} with the properties that if f(u)=0, then vertex u is adjacent to at least one vertex assigned 3 or at least two vertices assigned 2, and if f(u)=1, then vertex u is adjacent to at least one vertex assigned 2 or 3. The weight of f equals w(f)=[sum]v[is an element of]Vf(v). The double Roman domination number [gamma]dR(G) of a graph G is the minimum weight of a double Roman dominating function of G. A graph is said to be double Roman if [gamma]dR(G)=3[gamma](G), where [gamma](G) is the domination number of G. We obtain the sharp lower bound of the double Roman domination number of generalized Petersen graphs P(3k,k), and we construct solutions providing the upper bounds, which gives exact values of the double Roman domination number for all generalized Petersen graphs P(3k,k). This implies that P(3k,k) is a double Roman graph if and only if either k[identical to]0 (mod 3) or k[is an element of]{1,4}.
Keywords
dvojna rimska dominacija;posplošeni Petersenovi grafi;dvojno rimski grafi;double Roman domination;generalized Petersen graph;double Roman graph;
Data
Language: |
English |
Year of publishing: |
2021 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FS - Faculty of Mechanical Engineering |
UDC: |
519.17(045) |
COBISS: |
50563587
|
ISSN: |
2227-7390 |
Views: |
151 |
Downloads: |
49 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary keywords: |
dvojna rimska dominacija;posplošeni Petersenovi grafi;dvojno rimski grafi; |
Type (COBISS): |
Article |
Pages: |
f. 1-18 |
Volume: |
ǂVol. ǂ9 |
Issue: |
ǂiss. ǂ4 |
Chronology: |
Feb. 2021 |
DOI: |
10.3390/math9040336 |
ID: |
14305986 |