Abstract
Naj bo ▫$\Gamma$▫ ne-dvodelen razdaljno-regularen graf z množico vozlišč ▫$X$▫, premerom ▫$D \ge 3$▫, ter stopnjo ▫$k \ge 3$▫. Izberimo si vozlišče ▫$x \in X$▫ in naj bo ▫$T=T(x)$▫ Terwilligerjeva algebra grafa ▫$\Gamma$▫ glede na ▫$x$▫. Za vsako vozlišče ▫$z \in X$▫ in za ▫$0 \le i \le D$▫ naj bo ▫$\Gamma_i(z)=\{w \in X : \partial(z, w) = i\}$▫ označimo ▫$D_j^i = D_j^i(x, y) = \Gamma_i(x) \cap \Gamma_j(y)$▫ in za dano vozlišče ▫$y$▫ definirajmo preslikavi ▫$H_i \colon D_i^i \to \mathbb{Z}$▫ in ▫$V_i \colon D_{i-1}^i \to \mathbb{Z}$▫ takole: ▫$$H_i(z) = |\Gamma_1(z) \cap D_{i-1}^{i-1}|, \quad V_i(z) = |\Gamma_1(z) \cap D_{i-1}^{i-1}|.$$▫ Privzemimo, da sta za vsako vozlišče ▫$y \in \Gamma_1(x)$▫ in za vsak ▫$2 \le i \le D$▫ pripadajoči preslikavi ▫$H_i$▫ in ▫$V_i$▫ konstantni, ter da te konstante niso odvisne od izbire vozlišča ▫$y$▫. Dalje tudi privzemimo, da so konstantne vrednosti preslikav ▫$H_i$▫ neničelne za ▫$2 \le i \le D$▫. Pokažemo, da je vsak nerazcepen ▫$T$▫-modul s krajiščem 1 tanek. Nadalje tudi pokažemo, da ima ▫$\Gamma$▫ do izomorfizma natančno natanko tri nerazcepne ▫$T$▫-module s krajiščem 1 natanko takrat, ko veljajo trije kombinatorični pogoji (ki jih definiramo kasneje). Kot primer pokažemo, da ti trije kombinatorični pogoji veljajo za Johnsonove grafe ▫$J(n, m)$▫, kjer je ▫$n \ge 7$▫, ▫$3 \le m < n/2$▫.
Keywords
razdaljno-regularen graf;Terwilligerjeva algebra;podkonstituentska algebra;distance-regular graph;Terwilliger algebra;subconstituent algebra;
Data
Language: |
English |
Year of publishing: |
2020 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UP - University of Primorska |
UDC: |
519.17 |
COBISS: |
22957059
|
ISSN: |
1855-3966 |
Parent publication: |
Ars mathematica contemporanea
|
Views: |
1301 |
Downloads: |
86 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
O nekaterih 1-tankih razdaljno-regularnih grafih |
Secondary abstract: |
Naj bo ▫$\Gamma$▫ ne-dvodelen razdaljno-regularen graf z množico vozlišč ▫$X$▫, premerom ▫$D \ge 3$▫, ter stopnjo ▫$k \ge 3$▫. Izberimo si vozlišče ▫$x \in X$▫ in naj bo ▫$T=T(x)$▫ Terwilligerjeva algebra grafa ▫$\Gamma$▫ glede na ▫$x$▫. Za vsako vozlišče ▫$z \in X$▫ in za ▫$0 \le i \le D$▫ naj bo ▫$\Gamma_i(z)=\{w \in X : \partial(z, w) = i\}$▫ označimo ▫$D_j^i = D_j^i(x, y) = \Gamma_i(x) \cap \Gamma_j(y)$▫ in za dano vozlišče ▫$y$▫ definirajmo preslikavi ▫$H_i \colon D_i^i \to \mathbb{Z}$▫ in ▫$V_i \colon D_{i-1}^i \to \mathbb{Z}$▫ takole: ▫$$H_i(z) = |\Gamma_1(z) \cap D_{i-1}^{i-1}|, \quad V_i(z) = |\Gamma_1(z) \cap D_{i-1}^{i-1}|.$$▫ Privzemimo, da sta za vsako vozlišče ▫$y \in \Gamma_1(x)$▫ in za vsak ▫$2 \le i \le D$▫ pripadajoči preslikavi ▫$H_i$▫ in ▫$V_i$▫ konstantni, ter da te konstante niso odvisne od izbire vozlišča ▫$y$▫. Dalje tudi privzemimo, da so konstantne vrednosti preslikav ▫$H_i$▫ neničelne za ▫$2 \le i \le D$▫. Pokažemo, da je vsak nerazcepen ▫$T$▫-modul s krajiščem 1 tanek. Nadalje tudi pokažemo, da ima ▫$\Gamma$▫ do izomorfizma natančno natanko tri nerazcepne ▫$T$▫-module s krajiščem 1 natanko takrat, ko veljajo trije kombinatorični pogoji (ki jih definiramo kasneje). Kot primer pokažemo, da ti trije kombinatorični pogoji veljajo za Johnsonove grafe ▫$J(n, m)$▫, kjer je ▫$n \ge 7$▫, ▫$3 \le m < n/2$▫. |
Secondary keywords: |
razdaljno-regularen graf;Terwilligerjeva algebra;podkonstituentska algebra; |
Pages: |
str. 187-210 |
Volume: |
ǂVol. ǂ18 |
Issue: |
ǂno. ǂ2 |
Chronology: |
2020 |
DOI: |
10.26493/1855-3974.2193.0b0 |
ID: |
14372931 |