Matic Žbontar (Author), Mitja Petrič (Author), Primož Mrvar (Author)

Abstract

The aim of this study was to determine the correlation between the size and the distribution of microstructural constituents and their cooling rate, as well as the correlation between the mechanical properties and the cooling rate of AlSi9Cu3 aluminum alloy when cast in high-pressure die casting (HPDC) conditions. In other words, the ultimate goal of the research was to determine the mechanical properties for a casting at different cooling rates. Castings with different wall thicknesses were chosen, and different cooling rates were assumed for each one. Castings from industrial technological practice were systematically chosen, and probes were extracted from those castings for the characterization of their mechanical properties. Special non-standard cylinders were created on which compressive tests were carried out. The uniqueness of this research lies in the fact that the diameters of the designed cylinders were in direct correlation to the actual wall thickness of the castings. This is important because the solidification of metal in the die cavity is complex, in that the cooling rates are higher on the surface of the casting than in the center. Local in-casting cooling rates were determined using numerical simulations. It was discovered that with increasing cooling rates from 60 K/s to 125 K/s the values for strength at 5% deformation increased on average from 261 MPa to 335 MPa.

Keywords

HPDC;aluminum alloy AlSi9Cu3;cooling rate;solidification processes;mechanical properties;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL NTF - Faculty of Natural Sciences and Engineering
UDC: 669
COBISS: 48681731 Link will open in a new window
ISSN: 2075-4701
Views: 162
Downloads: 51
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Type (COBISS): Article
Pages: str. 1-13
Volume: ǂVol. ǂ11
Issue: ǂiss. ǂ2
Chronology: 2021
DOI: 10.3390/met11020186
ID: 14562749