Abstract
A complete classification of cubic symmetric graphs of girth 6 is given. It is shown that with the exception of the Heawood graph, the Moebius-Kantor graph, the Pappus graph, and the Desargues graph, a cubic symmetric graph ▫$X$▫ of girth 6 is a normal Cayley graph of a generalized dihedral group; in particular, (i) ▫$X$▫ is 2-regular if and only if it is isomorphic to a so-called ▫$I_k^n$▫-path, a graph of order either ▫$n^2/2$▫ or ▫$n^2/6$▫, which is characterized by the fact that its quotient relative to a certain semiregular automorphism is a path. (ii) ▫$X$▫ is 1-regular if and only if there exists an integer ▫$r$▫ with prime decomposition ▫$r=3^s p_1^{e_1} \dots p_t^{e_t} > 3$▫, where ▫$s \in \{0,1\}$▫, ▫$t \ge 1$▫, and ▫$p_i \equiv 1 \pmod{3}$▫, such that ▫$X$▫ is isomorphic either to a Cayley graph of a dihedral group ▫$D_{2r}$▫ of order ▫$2r$▫ or ▫$X$▫ is isomorphic to a certain ▫$\ZZ_r$▫-cover of one of the following graphs: the cube ▫$Q_3$▫, the Pappus graph or an ▫$I_k^n(t)$▫-path of order ▫$n^2/2$▫.
Keywords
teorija grafov;kubični grafi;simetrični grafi;▫$s$▫-regularni grafi;dolžina najkrajšega cikla;graph theory;cubic graphs;symmetric graphs;▫$s$▫-regular graphs;girth;consistent cycle;
Data
Language: |
English |
Year of publishing: |
2009 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UP - University of Primorska |
UDC: |
519.17 |
COBISS: |
2724823
|
ISSN: |
0095-8956 |
Views: |
3842 |
Downloads: |
86 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary keywords: |
teorija grafov;kubični grafi;simetrični grafi;▫$s$▫-regularni grafi;dolžina najkrajšega cikla; |
Type (COBISS): |
Not categorized |
Pages: |
str. 162-184 |
Volume: |
ǂVol. ǂ99 |
Issue: |
ǂNo. ǂ1 |
Chronology: |
2009 |
Keywords (UDC): |
mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika;combinatorial analysis;graph theory;kombinatorika; |
DOI: |
10.1016/j.jctb.2008.06.001 |
ID: |
1471792 |