Povzetek
A regular covering projection ▫$\wp : \widetilde{X} \to X$▫ of connected graphs is ▫$G$▫-admissible if ▫$G$▫ lifts along ▫$\wp$▫. Denote by ▫$\tilde{G}$▫ the lifted group, and let CT▫$(\wp)$▫ be the group of covering transformations. The projection is called ▫$G$▫-split whenever the extension ▫{$\mathrm{CT}}(\wp) \to \tilde{G} \to G$▫ splits. In this paper, split 2-covers are considered, with a particular emphasis given to cubic symmetric graphs. Supposing that ▫$G$▫ is transitive on ▫$X$▫, a ▫$G$▫-split cover is said to be ▫$G$▫-split-transitive if all complements ▫$\tilde{G} \cong G$▫ of CT▫$(\wp)$▫ within ▫$\tilde{G}$▫ are transitive on ▫$\widetilde{X}$▫; it is said to be ▫$G$▫-split-sectional whenever for each complement ▫$\tilde{G}$▫ there exists a ▫$\tilde{G}$▫-invariant section of ▫$\wp$▫; and it is called ▫$G$▫-split-mixed otherwise. It is shown, when ▫$G$▫ is an arc-transitive group, split-sectional and split-mixed 2-covers lead to canonical double covers. Split-transitive covers, however, are considerably more difficult to analyze. For cubic symmetric graphs split 2-cover are necessarily canonical double covers (that is, no ▫$G$▫-split-transitive 2-covers exist) when ▫$G$▫ is 1-regular or 4-regular. In all other cases, that is, if ▫$G$▫ is ▫$s$▫-regular, ▫$s=2,3$▫ or ▫$5$▫, a necessary and sufficient condition for the existence of a transitive complement ▫$\tilde{G}$▫ is given, and moreover, an infinite family of split-transitive 2-covers based on the alternating groups of the form ▫$A_{12k+10}$▫ is constructed. Finally, chains of consecutive 2-covers, along which an arc-transitive group ▫$G$▫ has successive lifts, are also considered. It is proved that in such a chain, at most two projections can be split. Further, it is shown that, in the context of cubic symmetric graphs, if exactly two of them are split, then one is split-transitive and the other one is either split-sectional or split-mixed.
Ključne besede
teorija grafov;grafi;kubični grafi;simetrični grafi;▫$s$▫-regularna grupa;regularna krovna projekcija;graph theory;graphs;cubic graphs;symmetric graphs;▫$s$▫-regular group;regular covering projection;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2008 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UP - Univerza na Primorskem |
UDK: |
519.17 |
COBISS: |
2524887
|
ISSN: |
0095-8956 |
Št. ogledov: |
1100 |
Št. prenosov: |
253 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Slovenski jezik |
Sekundarne ključne besede: |
teorija grafov;grafi;kubični grafi;simetrični grafi;▫$s$▫-regularna grupa;regularna krovna projekcija; |
Vrsta dela (COBISS): |
Delo ni kategorizirano |
Strani: |
str. 324-341 |
Letnik: |
ǂVol. ǂ98 |
Zvezek: |
ǂno. ǂ2 |
Čas izdaje: |
2008 |
ID: |
1471784 |