Abstract
Preslikava iz množice vozlišč grafa ▫$G$▫ v potenčno množico množice ▫$\{1,2,\dots, k\}$▫ se imenuje ▫$k$▫-mavrična dominantna funkcija, če za poljubno vozlišče ▫$v$▫ z lastnostjo ▫$f(v) = \emptyset$▫ velja ▫$\{1,\dots,k\} = \bigcup_{u \in N(v)}f(u)$▫. Obravnavamo ▫$k$▫-mavrično dominantno število grafa ▫$G$▫, ▫$\gamma_{rk}(G)$▫, ki je minimalna vsota (po vseh vozliščih grafa ▫$G$▫) moči podmnožic, ki so vozliščem dodeljena s ▫$k$▫-mavrično dominantno funkcijo. V članku se osredotočimo na 2-mavrično dominantno število leksikografskega produkta grafov in dokažemo natančno spodnjo in zgornjo mejo za to število. Dejansko pokažemo natančno vrednost za ▫$\gamma_{r2}(G \circ H)$▫, razen v primeru, ko je ▫$\gamma_{r2}(H) = 3$▫ in obstaja taka minimalna 2-mavrična dominantna funkcija grafa $H$, ki nekemu vozlišču v grafu ▫$H$▫ dodeli oznako ▫$\{1,2\}$▫.
Keywords
dominacija;popolna dominacija;mavrična dominacija;leksikografski produkt;domination;total domination;rainbow domination;lexicographic product;
Data
Language: |
English |
Year of publishing: |
2013 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
UDC: |
519.17 |
COBISS: |
3514668
|
ISSN: |
0166-218X |
Views: |
883 |
Downloads: |
101 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Mavrična dominacija v leksikografskem produktu grafov |
Secondary abstract: |
A ▫$k$▫-rainbow dominating function of a graph ▫$G$▫ is a map ▫$f$▫ from ▫$V(G)$▫ to the set of all subsets of ▫$\{1,2,\dots,k\}$▫ such that ▫$\{1,\dots,k\} = \bigcup_{u \in N(v)}f(u)$▫ whenever ▫$v$▫ is a vertex with ▫$f(v) = \emptyset$▫. The ▫$k$▫-rainbow domination number of ▫$G$▫ is the invariant ▫$\gamma_{rk}(G)$▫, which is the minimum sum (over all the vertices of ▫$G$▫) of the cardinalities of the subsets assigned by a ▫$k$▫-rainbow dominating function. We focus on the 2-rainbow domination number of the lexicographic product of graphs and prove sharp lower and upper bounds for this number. In fact, we prove the exact value of ▫$\gamma_{r2}(G \circ H)$▫ in terms of domination invariants of ▫$G$▫ except for the case when ▫$\gamma_{r2}(H) = 3$▫ and there exists a minimum 2-rainbow dominating function of ▫$H$▫ such that there is a vertex in ▫$H$▫ with the label ▫$\{1,2\}$▫. |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 2133-2141 |
Volume: |
ǂVol. ǂ161 |
Issue: |
ǂiss. ǂ13-14 |
Chronology: |
2013 |
ID: |
1471833 |