Abstract

Uvedemo teorijo Cantorjevega prostor-časa. V tej teoriji je vsak delec možno interpretirati kot razcep nekega drugega. Nekateri delci so razcepni s protonom in so izraženi s ▫$\phi\overline{\alpha_0}$▫. Če sledimo idejam El Naschieja so limitne množice Kleinove grupe Cantorjeve množice, s Haussdorffovo dimenzijo ▫$\phi$▫ ali ▫$\frac{1}{\phi}, \frac{1}{\phi^2}, \frac{1}{\phi^3}...$▫ Z uporabo E-neskončne teorije je masni spekter elementarnih delcev, kot funkcija zlatega reza, v limitni množici Mobius-Kleinove geometrije kvantnega prostor-časa, kot je bilo obravnavano pri Dattu.

Keywords

E-neskončna teorija;Hausdorffova dimenzija;Cantorjeva množica;Mobius-Kleinova transformacija;E-infinity theory;Haussdorff dimension;Cantor set;Mobius-Klein transformation;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FS - Faculty of Mechanical Engineering
UDC: 517.938:53
COBISS: 8332310 Link will open in a new window
ISSN: 0960-0779
Views: 724
Downloads: 78
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Unknown
Secondary title: Povezava med VAK-om, teorijo vozlov in El Naschievo teorijo masnega spectra visoko energijskih elementarnih delcev
Secondary abstract: In this paper we give an introduction to the ▫$\varepsilon^{(infty)}$▫ Cantorian time-space theory. In this theory every particle can be interpreted as a scaling of another particle. Some particles are a scaling of the proton and are expressed in terms of ▫$\phi$▫ and ▫$\bar{\alpha}_0$▫. Following the VAK suggestion of El Naschie, the limit sets of Kleinan groups are Cantor sets with Hausdorff dimension ▫$\phi$▫ or a derivative of ▫$\phi$▫ such as ▫$1/\phi$▫, ▫$1/\phi^2$▫, ▫$1/\phi3$▫, etc. Consequently, and using ▫$\varepsilon^{(\infty)}$▫ theory, the mass spectrum of elementary particles may be found from the limit set of the Möbius-Klein geometry of quantum space-time as a function of the golden mean ▫$\phi = (\sqrt{5}-1)/2 = 0.618033989$▫ as discussed by Datta (Chaos, Solitons and Fractals 17(2003)621-630).
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 471-478
Volume: ǂVol. ǂ19
Issue: ǂiss. ǂ3
Chronology: 2004
ID: 1471927