Povzetek
Uvedemo teorijo Cantorjevega prostor-časa. V tej teoriji je vsak delec možno interpretirati kot razcep nekega drugega. Nekateri delci so razcepni s protonom in so izraženi s ▫$\phi\overline{\alpha_0}$▫. Če sledimo idejam El Naschieja so limitne množice Kleinove grupe Cantorjeve množice, s Haussdorffovo dimenzijo ▫$\phi$▫ ali ▫$\frac{1}{\phi}, \frac{1}{\phi^2}, \frac{1}{\phi^3}...$▫ Z uporabo E-neskončne teorije je masni spekter elementarnih delcev, kot funkcija zlatega reza, v limitni množici Mobius-Kleinove geometrije kvantnega prostor-časa, kot je bilo obravnavano pri Dattu.
Ključne besede
E-neskončna teorija;Hausdorffova dimenzija;Cantorjeva množica;Mobius-Kleinova transformacija;E-infinity theory;Haussdorff dimension;Cantor set;Mobius-Klein transformation;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2004 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UM FS - Fakulteta za strojništvo |
UDK: |
517.938:53 |
COBISS: |
8332310
|
ISSN: |
0960-0779 |
Št. ogledov: |
724 |
Št. prenosov: |
78 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Neznan jezik |
Sekundarni naslov: |
Povezava med VAK-om, teorijo vozlov in El Naschievo teorijo masnega spectra visoko energijskih elementarnih delcev |
Sekundarni povzetek: |
In this paper we give an introduction to the ▫$\varepsilon^{(infty)}$▫ Cantorian time-space theory. In this theory every particle can be interpreted as a scaling of another particle. Some particles are a scaling of the proton and are expressed in terms of ▫$\phi$▫ and ▫$\bar{\alpha}_0$▫. Following the VAK suggestion of El Naschie, the limit sets of Kleinan groups are Cantor sets with Hausdorff dimension ▫$\phi$▫ or a derivative of ▫$\phi$▫ such as ▫$1/\phi$▫, ▫$1/\phi^2$▫, ▫$1/\phi3$▫, etc. Consequently, and using ▫$\varepsilon^{(\infty)}$▫ theory, the mass spectrum of elementary particles may be found from the limit set of the Möbius-Klein geometry of quantum space-time as a function of the golden mean ▫$\phi = (\sqrt{5}-1)/2 = 0.618033989$▫ as discussed by Datta (Chaos, Solitons and Fractals 17(2003)621-630). |
URN: |
URN:SI:UM: |
Vrsta dela (COBISS): |
Delo ni kategorizirano |
Strani: |
str. 471-478 |
Letnik: |
ǂVol. ǂ19 |
Zvezek: |
ǂiss. ǂ3 |
Čas izdaje: |
2004 |
ID: |
1471927 |