Abstract
 
Naj bo ▫$\alpha_i(G)$▫ število induciranih ▫$i$▫-kock grafa ▫$G$▫. Tedaj je polinom kock ▫$c(G,x)$▫ grafa ▫$G$▫ definiran z ▫$\sum_{i \ge 0} \alpha_i (G) x_i$▫. Pokazano je, da je vsaka funkcija ▫$f$▫ z dvemi predpisanimi naravnimi lastnostmi do faktorja ▫$f(Q_0,x)$▫ enaka polinomu kock. Vpeljan je tudi odvod ▫$\partial G$▫ medianskega grafa ▫$G$▫. Dokazano je, da je polinom kock edina funkcija ▫$f$▫ z lastnostjo ▫$f'(G,z) = f(\partial G,x)$▫, če je le ▫$f(G,0) = |V(G)|$▫. Dokazanih je tudi več relacij za medianske grafe, ki posplošujejo prej znane rezultate. Na primer, za vsak ▫$s \ge 0$▫ velja ▫$c^{(s)}(G, x+1) = \sum_{i \ge s} \frac{c^{(s)}(G,x)}{(i-s)!}$▫.
    Keywords
 
matematika;teorija grafov;polinom kock;odvod grafa;medianski grafi;mathematics;graph theory;cube polynomials;graph derivation;median graphs;
    Data
 
    
        
            | Language: | English | 
        
        
            | Year of publishing: | 2003 | 
            
        
        
            | Typology: | 1.01 - Original Scientific Article | 
            
        
            | Organization: | UL FMF - Faculty of Mathematics and Physics | 
        
            | UDC: | 519.17 | 
   
        
        
            | COBISS: | 12165977   | 
        
        
            | ISSN: | 1077-8926 | 
        
  
        
            | Views: | 30 | 
        
        
            | Downloads: | 6 | 
        
        
            | Average score: | 0 (0 votes) | 
        
            | Metadata: |                       | 
    
    
    Other data
 
    
        
            | Secondary language: | Slovenian | 
        
        
            | Secondary title: | Polinom kock in njegovi odvodi: primer medianskih grafov | 
        
        
        
            | Secondary abstract: | For ▫$i \ge 0$▫, the ▫$i$▫-cube of ▫$Q_i$▫ is the graph on ▫$2^i$▫ vertices representing ▫$0/1$▫ tuples of lenght ▫$i$▫, where two vertices are adjacent whenever the tuples differ in exactly one position. (In particular, ▫$Q_0=K_1$▫.) Let ▫$\alpha_i(G)$▫ be the number of induced ▫$i$▫-cubes of a graph ▫$G$▫. Then the cube polynomial ▫$c(G,x)$▫ of ▫$G$▫ is introduced as ▫$\sum_{i \ge 0} \alpha_i (G) x_i$▫. It is shown that any function ▫$f$▫ with two related, natural properties, is up to the factor ▫$f(Q_0,x)$▫ the cubes polynomial. The derivation ▫$\partial G$▫ of a median graph ▫$G$▫ is also introduced and it is proved that the cubes polynomial is the only function ▫$f$▫ with the property ▫$f'(G,z) = f(\partial G,x)$▫ provided that ▫$f(G,0) = |V(G)|$▫. As the main application of the new concept,several relations that widely generalize previous such results for median graphs are proved. For istance, it is shown that for any ▫$s \ge 0$▫ we have ▫$c^{(s)}(G, x+1) = \sum_{i \ge s} \frac{c^{(i)}(G,x)}{(i-s)!}$▫, where certain derivatives of the cube polynomial coincide with well-known invariants of median graphs. | 
        
        
            | Secondary keywords: | matematika;teorija grafov;polinom kock;odvod grafa;medianski grafi; | 
        
            | URN: | URN:SI:UM: | 
        
            
        
            | Type (COBISS): | Not categorized | 
        
        
           
        
           
        
           
        
           
        
           
        
           
        
           
        
            | Pages: | R3 (11 str.) | 
        
           
        
            | Volume: | ǂVol. ǂ10 | 
        
           
        
            | Issue: | ǂno. ǂ1 | 
        
           
        
            | Chronology: | 2003 | 
        
           
        
           
        
           
        
           
        
           
        
          
        
          
        
          
        
         
        
         
        
        
            | ID: | 1472232 |