Povzetek
 
Polinom kock ▫$c(G,X)$▫ grafa ▫$G$▫ je definiran z ▫$\sum_{i \ge 0}\alpha_i(G)x^i$▫, kjer ▫$\alpha_i(G)$▫ označuje število induciranih ▫$i$▫-kock v ▫$G$▫. Naj bo ▫$G$▫ medianski graf. Dokazano je, da je vsaka racionalna ničla polinoma ▫$c(G,x)$▫ oblike ▫$-\frac{t+1}{t}$▫ za neko celo število ▫$t>0$▫ in da ima ▫$c(G,x)$▫ vedno realno ničlo na intervalu ▫$[-2,-1)$▫. Nadalje ima ▫$c(G,x)$▫ ▫$p$▫-kratno ničlo natanko tedaj, ko je ▫$G$▫ kartezični produkt ▫$p$▫ dreves istega reda. Grafi acikličnih kubičnih kompleksov so karakterizirani kot grafi za katere velja ▫$c(H,-2)=0$▫ za vsak 2-povezan konveksen podgraf ▫$H$▫.
    Ključne besede
 
matematika;teorija grafov;polinom kock;koren;medianski graf;kartezični produkt grafov;mathematics;graph theory;cube polynomial;root;median graph;Cartesian product;
    Podatki
 
    
        
            | Jezik: | Angleški jezik | 
        
        
            | Leto izida: | 2003 | 
            
        
        
            | Tipologija: | 0 - Ni določena | 
            
        
            | Organizacija: | UL FMF - Fakulteta za matematiko in fiziko | 
        
            | UDK: | 519.17 | 
   
        
        
            | COBISS: | 12590937   | 
        
        
            | ISSN: | 1318-4865 | 
        
  
        
            | Št. ogledov: | 47 | 
        
        
            | Št. prenosov: | 8 | 
        
        
            | Ocena: | 0 (0 glasov) | 
        
            | Metapodatki: |                       | 
    
    
    Ostali podatki
 
    
        
            | Sekundarni jezik: | Slovenski jezik | 
        
        
            | Sekundarni naslov: | Koreni polinoma kock medianskih grafov | 
        
        
        
            | Sekundarni povzetek: | The cube polynomial ▫$c(G,X)$▫ of a graph ▫$G$▫ is defined as ▫$\sum_{i \ge 0}\alpha_i(G)x^i$▫, where ▫$\alpha_i(G)$▫ denotes the number of induced ▫$i$▫-cubes of ▫$G$▫, in particular, ▫$\alpha_0(G) = |V(G)|$▫ and ▫$\alpha_1(G) = |E(G)|$▫. Let ▫$G$▫ be a median graph. It is proved that every rational zero of ▫$c(G,x)$▫ is of the form ▫$-\frac{t+1}{t}$▫ for some integer ▫$t>0$▫ and that ▫$c(G,x)$▫ always has a real zero in the interval ▫$[-2,-1)$▫. Moreover, ▫$c(G,x)$▫ has a ▫$p$▫-multiple zero if and only if ▫$G$▫ is the cartesian product of ▫$p$▫ trees all of the same order. Graphs of acyclic cubical complexes are characterized as the graphs ▫$G$▫ for which ▫$c(H,-2)=0$▫ holds for every 2-connected convex subgraph ▫$H$▫ of ▫$G$▫. Median graphs that are Cartesian products are also characterized. | 
        
        
            | Sekundarne ključne besede: | matematika;teorija grafov;polinom kock;koren;medianski graf;kartezični produkt grafov; | 
        
            | URN: | URN:SI:UM: | 
        
            
        
            | Vrsta dela (COBISS): | Delo ni kategorizirano | 
        
        
           
        
           
        
           
        
           
        
           
        
           
        
           
        
            | Strani: | str. 1-14 | 
        
           
        
            | Letnik: | ǂVol. ǂ41 | 
        
           
        
            | Zvezek: | ǂšt. ǂ887 | 
        
           
        
            | Čas izdaje: | 2003 | 
        
           
        
           
        
           
        
           
        
           
        
          
        
          
        
          
        
         
        
         
        
        
            | ID: | 66368 |