Abstract
Preslikava ▫$f$▫ na kolobarju ▫$A$▫ je komutirajoča, če ▫$f(x)$▫ komutira z ▫$x$▫ za vsak ▫$x$▫ iz ▫$A$▫. Članek opiše razvoj teorije komutirajočih preslikav in njenih aplikacij. Obravnavane so naslednje teme: komutirajoča odvajanja, komutirajoče aditivne preslikave, komutirajoče sledi mulitiaditivnih preslikav, različne posplošitve pojma komutirajočih preslikav, in aplikacije rezultatov o komutirajočih preslikavah na različnih področjih, predvsem v teoriji Liejevih algeber.
Keywords
matematika;algebra;prakolobar;komutirajoča preslikava;funkcijska identiteta;Banachova algebra;odvajanje;Liejeve algebre;linearni ohranjevalci;ne zaključna dela;mathematics;commuting map;functional identity;prime ring;Banach algebra;derivation;Lie theory;linear preservers;
Data
Language: |
English |
Year of publishing: |
2004 |
Typology: |
1.02 - Review Article |
Organization: |
UM PEF - Faculty of Education |
UDC: |
512.552 |
COBISS: |
13330265
|
ISSN: |
1027-5487 |
Views: |
1372 |
Downloads: |
27 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Komutirajoče preslikave: pregledni članek |
Secondary abstract: |
A map ▫$f$▫ on a ring ▫$\mathcal{A}$▫ is said to be commuting if ▫$f(x)$▫ commutes with ▫$x$▫ for every ▫$x \in \mathcal{A}$▫. The paper surveys the development of the theory of commuting maps and their applications. The following topics are discussed: commuting derivations, commuting additive maps, commuting traces of multiadditive maps, various generalizations of the notion of a commuting map, and applications of results on commuting maps to different areas, in particular to Lie theory. |
Secondary keywords: |
Algebra; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Article |
Pages: |
str. 361-397 |
Volume: |
ǂVol. ǂ8 |
Issue: |
ǂno. ǂ3 |
Chronology: |
2004 |
DOI: |
10.11650/twjm/1500407660 |
ID: |
1472410 |