Matej Brešar (Author)

Abstract

Preslikava ▫$f$▫ na kolobarju ▫$A$▫ je komutirajoča, če ▫$f(x)$▫ komutira z ▫$x$▫ za vsak ▫$x$▫ iz ▫$A$▫. Članek opiše razvoj teorije komutirajočih preslikav in njenih aplikacij. Obravnavane so naslednje teme: komutirajoča odvajanja, komutirajoče aditivne preslikave, komutirajoče sledi mulitiaditivnih preslikav, različne posplošitve pojma komutirajočih preslikav, in aplikacije rezultatov o komutirajočih preslikavah na različnih področjih, predvsem v teoriji Liejevih algeber.

Keywords

matematika;algebra;prakolobar;komutirajoča preslikava;funkcijska identiteta;Banachova algebra;odvajanje;Liejeve algebre;linearni ohranjevalci;ne zaključna dela;mathematics;commuting map;functional identity;prime ring;Banach algebra;derivation;Lie theory;linear preservers;

Data

Language: English
Year of publishing:
Typology: 1.02 - Review Article
Organization: UM PEF - Faculty of Education
UDC: 512.552
COBISS: 13330265 Link will open in a new window
ISSN: 1027-5487
Views: 1372
Downloads: 27
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Komutirajoče preslikave: pregledni članek
Secondary abstract: A map ▫$f$▫ on a ring ▫$\mathcal{A}$▫ is said to be commuting if ▫$f(x)$▫ commutes with ▫$x$▫ for every ▫$x \in \mathcal{A}$▫. The paper surveys the development of the theory of commuting maps and their applications. The following topics are discussed: commuting derivations, commuting additive maps, commuting traces of multiadditive maps, various generalizations of the notion of a commuting map, and applications of results on commuting maps to different areas, in particular to Lie theory.
Secondary keywords: Algebra;
URN: URN:SI:UM:
Type (COBISS): Article
Pages: str. 361-397
Volume: ǂVol. ǂ8
Issue: ǂno. ǂ3
Chronology: 2004
DOI: 10.11650/twjm/1500407660
ID: 1472410
Recommended works:
, no subtitle data available
, no subtitle data available
, doktorska disertacija